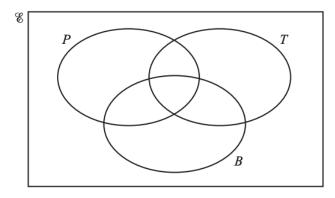
Mathematics Paper 4

Probability


(a) Sho		d at random, rethe probability	3 ecords the nur	4	_			
			cords the nur		3	6		
(i)	Write down	the probability		mber and re	places the ca	ard.		
			that the num	ber is 5 or 6				
								[1]
(ii)	Suleika does	this 300 times						
	Find how ma	any times she e	xpects the nu	mber 5 or 6				
								[1]
(b) Sul	ailea taleaa tara	aarda at rando	m without ro	nla aomant				
(b) Sul		cards at rando			the two card	ls is 5.		
•	1	,						
								[3]
(ii)	Find the prob	pability that at	least one of t	he numbers			e number.	[3]
(ii)	Find the prob	pability that at	least one of t	he numbers				[3]
(ii)	Find the prob	pability that at	least one of t	he numbers				[3]
(ii)	Find the prob	pability that at	least one of t	he numbers				[3]
(ii)	Find the prob	pability that at	least one of t	he numbers				[3]
(ii)	Find the prob	pability that at	least one of t	he numbers				[3]

- 9 This year, 40 students have each travelled by one or more of plane (P), train (T) or boat (B).
 - 7 have travelled only by plane.
 - 11 have travelled only by train.
 - 9 have travelled only by boat.

$$n(P \cap T) = 8$$

$$n(B \cap T) = 3$$

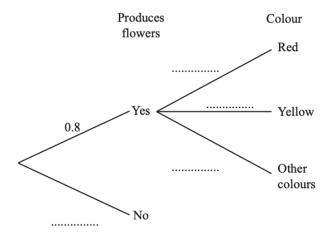
$$n(B \cap P) = 6$$

	(d)	Two stu	idents are chose	en at random.					
		Calcula	te the probabili	ity that they bo	th have travelle	ed only by plan	e.		
									[2]
	(a)	True str		t 1 C	41				,
	(e)					have travelled			
		Calcula	te the probabili	ity that they bo	th have also tra	velled by plane	.		
									[2]
2		The heigh	hts, h metres, of	f the 120 boys in	n an athletics cl	ub are recorded			
				tion about the l					
		ight	12/1/14	14/1/15	15/1/1/	16/1/17	17/1/10	10/1/1	
	(h 1	metres)	$1.3 < h \le 1.4$	$1.4 < h \le 1.5$	$1.5 < h \le 1.6$	$1.6 < h \le 1.7$	$1.7 < h \le 1.8$	$1.8 < h \le 1.$	9
	Fre	quency	7	18	30	24	27	14	

	Find the p	probability tl	hat this boy ha	s a height grea	ater than 1.8 n	1.	
(ii)	Three ho	ws are choses	n at random fr	om the club			
(11)	·			f the boys has	a height great	er than 1 8 m	and the other
			height of 1.41		a neight great	er man 1.8m	and the other
		n/h, of each o	of 200 cars pass	sing a building	is measured.		
Spee	d (vkm/h)	$0 < v \le 20$	20 < v ≤ 40	40 < <i>v</i> ≤ 45	$45 < v \le 50$	50 < <i>v</i> ≤ 60	60 < v ≤ 80
			34	62	58	26	4
Frequ	uency	16		02	36	20	
(c)	Two of the 2	200 cars are o	chosen at rando				7
(c)	Two of the 2	200 cars are o	chosen at rando	om.			7
(c)	Two of the 2	200 cars are o	chosen at rando	om.			7
(c)	Two of the 2	200 cars are o	chosen at rando	om.			7
(c)	Two of the 2	200 cars are o	chosen at rando	om.	er than 50 km/l		
(c)	Two of the 2	200 cars are o	chosen at rando	om.	er than 50 km/l	1.	
(c)	Two of the 2	200 cars are o	chosen at rando	om.	er than 50 km/l	1.	

(b) (i) One boy is chosen at random from the club.

The probability that a seed will produce flowers is 0.8.

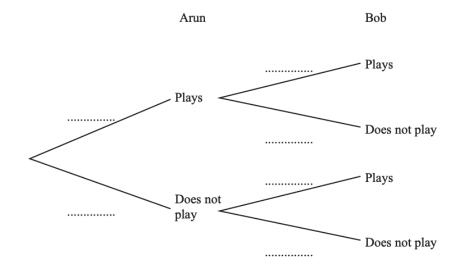

When a seed produces flowers, the probability that the flowers are red is 0.6 and the probability that the flowers are yellow is 0.3.

(a) Tanya has a seed that produces flowers.

Find the probability that the flowers are not red and not yellow.

.....[1]

(b) (i) Complete the tree diagram.


[2]

(ii) Find the probability that a seed chosen at random produces red flowers.

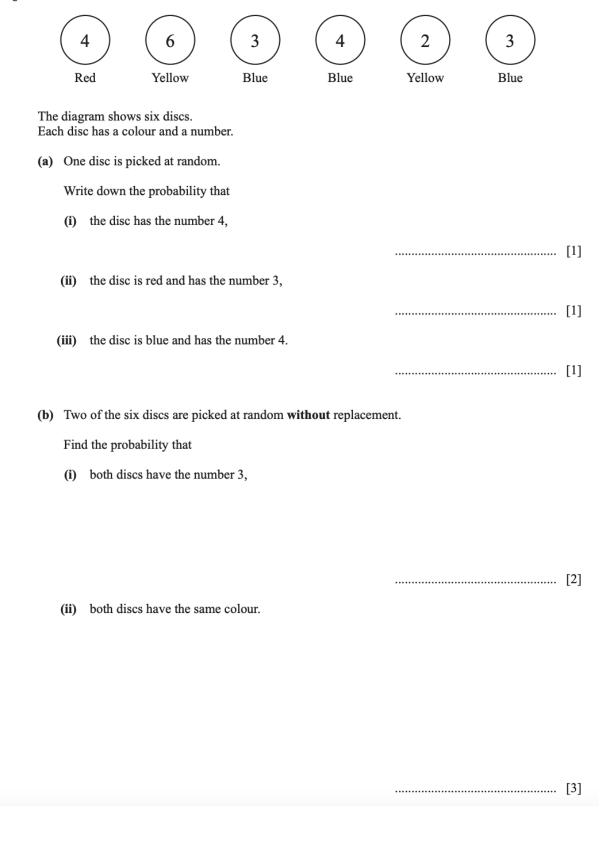
.....[2]

,	(iii)	Tanya chooses a seed at random.
		Find the probability that this seed does not produce red flowers and does not produce yellow flowers.
		[3]
(c)	Two	of the seeds are chosen at random.
	Find	the probability that one produces flowers and one does not produce flowers.
		[3]
		[3]

- 7 On any Saturday, the probability that Arun plays football is $\frac{3}{4}$. On any Saturday, the probability that Bob plays football is $\frac{2}{5}$.
 - (a) (i) Complete the tree diagram.

(ii) Calculate the probability that, one Saturday, Arun and Bob both play football.

.....[2]


[2]

(iii) Calculate the probability that, one Saturday, either Arun plays football or Bob plays football, but not both.

(b)	Calculate the probability that Bob plays football for 2 of the next 3 Saturdays.	
		[2]
		[3]
(c)	When Arun plays football, the probability that he scores the winning goal is $\frac{1}{7}$.	
	Calculate the probability that Arun scores the winning goal one Saturday.	
		[2]

(c)	Aria	other bag contains 15 red beads and 10 yellow beads. ana picks a bead at random, records its colour and replaces	s it in the bag.	
	(i)	then picks another bead at random. Find the probability that she picks two red beads.		
				[2]
	(ii)	Find the probability that she does not pick two red beads	•	
				[1]
(d)		ox contains 15 red pencils, 8 yellow pencils and 2 green per pencils are picked at random without replacement.	encils.	
	Fine	d the probability that at least one pencil is red.		
				[3]

9.

Find the probability that both discs have the same colour.

[3]

(c) Two of the six discs are picked at random with replacement.

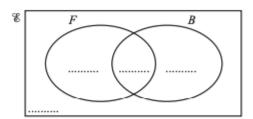
4
4

	P		O	5	5	S	I		В]		L	Ι	T	Y	
	Find (i)	d the	e prob	abilit	ty tha	t he pi		om,	witho	o ut re	place					 [1]
	(ii) (iii)					e lette							 			 [2]
(b)		d th	e prob	abilit	ty tha		er at ra me,	ndor	m.				 		 	 [3]

.....[2]

exactly two of the three letters are the same,		
		[5]
all three letters are different		
an three letters are different.		
		[2]
	all three letters are different.	

3		hila, Ravi and Talika each have a bag of balls. h of the bags contains 10 red balls and 8 blue balls.		
	(a)	Sushila takes one ball at random from her bag.		
		Find the probability that she takes a red ball.		
				[1]
	(b)	Ravi takes two balls at random from his bag, without replacement	t.	
		Find the probability that one ball is red and one ball is blue.		
				[3]
	(c)	Talika takes three balls at random from her bag, without replacem	ent.	
		Calculate the probability that the three balls are the same colour.		
				F 43
				[4]


6	% = 3	{students	in a	school?	ģ
v	eo —	Students	ша	SCHOOL	ĕ

 $F = \{\text{students who play football}\}\$

 $B = \{\text{students who play baseball}\}\$

There are 240 students in the school.

- 120 students play football
- · 40 students play baseball
- 90 students play football but not baseball.
- (a) Complete the Venn diagram to show this information.

[2]

		/	- 2
(b)	Find	$n(F' \cap$	R'

г:	17	ı
 Ŀ	Ц	ı

(c) A student in the school is chosen at random.

Find the probability that this student plays baseball but not football.

Г 1	17	١
 П	L	

(d) Two students who play baseball are chosen at random.

Find the probability that they both also play football.

	[3]	1
		,

3	The	prob	ability that Andrei cycles to school is r.	
	(a)	Wri	te down, in terms of r , the probability that Andrei does not cycle to school.	
			[1]
	(b)		probability that Benoit does not cycle to school is $1.3-r$. probability that both Andrei and Benoit do not cycle to school is 0.4 .	
		(i)	Complete the equation in terms of r .	
			() × () = 0.4	1]
		(ii)	Show that this equation simplifies to $10r^2 - 23r + 9 = 0$.	
			r	21
		(iii)	Solve by factorisation $10r^2 - 23r + 9 = 0$.	3]
		(111)	Solve by factorisation $107 - 257 + 9 = 0$.	
			$r = \dots $ or $r = \dots $ [3]
		(iv)	Find the probability that Benoit does not cycle to school.	
			[1]

- **8** (a) Angelo has a bag containing 3 white counters and x black counters. He takes two counters at random from the bag, without replacement.
 - (i) Complete the following statement.

The probability that Angelo takes two black counters is

$$\frac{x}{x+3} \times \underline{\hspace{1cm}}$$

- (ii) The probability that Angelo takes two black counters is $\frac{7}{15}$.
 - (a) Show that $4x^2 25x 21 = 0$.

[4]

(b) Solve by factorisation.

$$4x^2 - 25x - 21 = 0$$

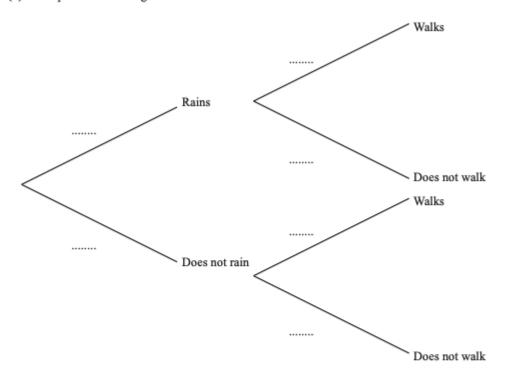
$$x = \dots$$
 or $x = \dots$ [3]

(c) Write down the number of black counters in the bag.

......[1]

(b)	Esme has a bag with 5 green counters and 4 red counters. She takes three counters at random from the bag without replacement.
	Work out the probability that the three counters are all the same colour.
	[4]

The	diag	ram shows 5 cards.				
(a)	Don	ald chooses a card at random.				
	(i)	Write down the probability that the number of	dots on this	card is an ev	ven numbe	er.
				•••••		
	(ii)	Write down the probability that the number of	dots on this	card is a pri	me numbe	er.
				•••••		•••••
(b)		ald chooses two of the five cards at random, we works out the total number of dots on these two		ement.		
	(i)	Find the probability that the total number of d	ots is 5.			
				•••••		•••••
	(ii)	Find the probability that the total number of d	ots is an odo	l number.		


0	(a)		hnaz picks two marbles at random without replacement.		
		Fine	d the probability that		
		(i)	the marbles are both red,		
					[2]
		(ii)	the marbles are not both red.		
					[1]
	(b)	A == 0			[1]
	(0)	Bry: If th	other bag contains 5 blue marbles and 2 green marbles. In picks one marble at random without replacement. This marble is not green, he picks another marble at random with continues until he picks a green marble.	hout replacement.	
		Fine	d the probability that he picks a green marble on his first, secon	nd or third attempt.	
					[4]

9 The probability that it will rain tomorrow is $\frac{5}{8}$.

If it rains, the probability that Rafael walks to school is $\frac{1}{6}$.

If it does not rain, the probability that Rafael walks to school is $\frac{7}{10}$.

(a) Complete the tree diagram.

[3]

(b) Calculate the probability that it will rain tomorrow and Rafael walks to school.

.....[2]

(c) Calculate the probability that Rafael does not walk to school.

4	(a) The	diagram show	s two sets of ca	irds.				
	Se	rt A	1	1	2	2	2	
	Se	et B	0	1	1	1	2	
	(i)	Jojo chooses	two cards at rai	ndom from Set	A without repla	cement.		
		Find the prob	ability that the	two cards have	the same numb	er.		
						***************************************	[3]
	(ii)	Jojo replaces Kylie then ch	the two cards.	at random from	n Set A and one	card at random f	rom Set B.	
		Find the prob	ability that the	two cards have	the same numb	oer.		
							[3	1
	(iii)	Who is the m Show all you		oose two cards	that have the sa			,
							[1]

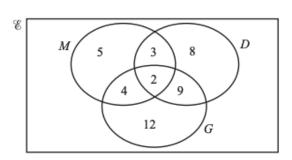
(b) Set *C*

4

4

5

5


5

Lena chooses three cards at random from Set C without replacement.

Find the probability that the third card chosen is numbered 4.

.....[3]

6 (a)

The Venn diagram above shows information about the number of students who study Music (M), Drama (D) and Geography (G).

(i) How many students study Music?

.....[1]

(ii) How many students study exactly two subjects?

.....[1]

(iii) Two students are chosen at random from those who study Drama.

Calculate the probability that they both also study Music.

	10 p	ckets contain barbecue flavoured chips. ackets contain salt flavoured chips. ckets contain chicken flavoured chips.
(a)	Mar	ia takes two packets at random without replacement.
	(i)	Show that the probability that she takes two packets of salt flavoured chips is $\frac{9}{38}$.
	(ii)	[2] Find the probability that she takes two packets of different flavoured chips.
		[4]
(b)		ia takes three packets at random, without replacement, from the 20 packets.
	Find	the probability that she takes at least two packets of chicken flavoured chips.
		[3]

12 A box contains 20 packets of potato chips.

7

Bag B

Bag A contains 3 black balls and 2 white balls. Bag B contains 1 black ball and 3 white balls.

- (a) A ball is taken at random from each bag.
 - (i) Show that a black ball is more likely to be taken from bag A than from bag B.

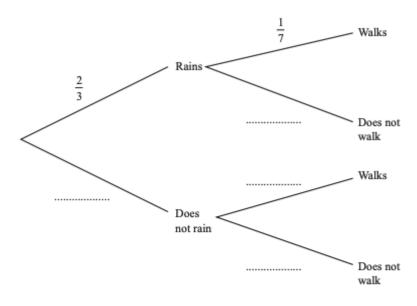
[1]

(ii) Find the probability that the two balls have different colours.

(b)		e balls are returned to their original bags. ree balls are taken at random from bag A, without replacement.	
	Fine	nd the probability that	
	(i)	they are all black,	
			[2]
	(ii)	they are all white.	
			F13
(c)	The	e balls are returned to their original bags.	[1]
(0)			
	This	pall is taken at random from bag A and its colour is recorded. is ball is then placed in bag B . pall is then taken at random from bag B .	
	Fine	and the probability that the ball taken from bag B has a different co	blour to the ball taken from bag A .
			[3]
			[2]

4 Ravi spins a biased 5-sided spinner, numbered 1 to 5. The probability of each number is shown in the table.

Number	1	2	3	4	5
Probability	1/6	$\frac{1}{4}$	$\frac{1}{3}$	x	x


	Probability	1 6	$\frac{1}{4}$	1 3	х	x	
Find the va	alue of x.						
Time the ti	arac or a.						
					x =		[3]
Ravi spins	the spinner once	e.					
Find the p	robability that th	e number i	s 2 or 3.				
							[2]
Ravi spins	the spinner twic	e.					
		times,					
()		,					
							[2]
(ii) the su	um of the numbe	rs is 3.					
							131
Davi anina	the enimon 72 t	imaa				•••••••	[3]
Calculate	now many times	he expects	the numbe	er 1.			
							[1]
	Ravi spins Find the pr Ravi spins Find the pr (i) the m	Find the value of x. Ravi spins the spinner once Find the probability that the Ravi spins the spinner twice Find the probability that (i) the number is 2 both to (ii) the sum of the number	Ravi spins the spinner once. Find the probability that the number is Ravi spins the spinner twice. Find the probability that (i) the number is 2 both times, (ii) the sum of the numbers is 3.	Ravi spins the spinner once. Find the probability that the number is 2 or 3. Ravi spins the spinner twice. Find the probability that (i) the number is 2 both times, (ii) the sum of the numbers is 3.	Ravi spins the spinner once. Find the probability that the number is 2 or 3. Ravi spins the spinner twice. Find the probability that (i) the number is 2 both times, (ii) the sum of the numbers is 3.	Find the value of x. x =	Ravi spins the spinner once. Find the probability that the number is 2 or 3. Ravi spins the spinner twice. Find the probability that (i) the number is 2 both times, (ii) the sum of the numbers is 3.

6 Each morning the probability that it rains is $\frac{2}{3}$.

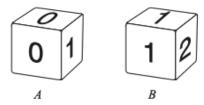
If it rains, the probability that Asha walks to school is $\frac{1}{7}$.

If it does not rain, the probability that Asha walks to school is $\frac{4}{7}$.

(a) Complete the tree diagram.

[2]

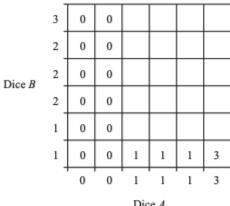
(b) Find the probability that it rains and Asha walks to school.


[21

(c) (i) Find the probability that Asha does not walk to school.

	(ii)	Find the expected number of days Asha does not walk to school in a term of 70 days.
		[2]
(d)	Find	I the probability that it rains on exactly one morning in a school week of 5 days.
(u)	rinc	The probability that it fains on exactly one morning in a school week of 3 days.
		[2]

9	(a)	A bag contains red beads and green beads. There are 80 beads altogether. The probability that a bead chosen at random is green is 0.35.					
		(i)	Find the number of red beads in the bag.				
				[2]			
		(ii)	Marcos chooses a bead at random and replaces it in the bag. He does this 240 times.				
			Find the number of times he would expect to choose a green be	ead.			
				[1]			
	(b)	Hun	fferent bag contains 2 blue marbles, 3 yellow marbles and 4 whin a chooses a marble at random, notes the colour, then replaces it does this three times.				
		Find	I the probability that				
		(i)	all three marbles are yellow,				
				[2]			
		(ii)	all three marbles are different colours.				
				[3]			


(c)	Another bag contains 2 green counters and 3 pink counters. Teresa chooses three counters at random without replacement.					
	Find the probability that she chooses more pink counters than green counters.					
	[4]					

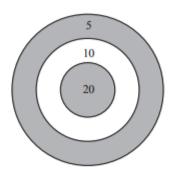
The The	diagram shows two fair dice. numbers on dice A are 0, 0, 1, 1, 1, 3. numbers on dice B are 1, 1, 2, 2, 2, 3. en a dice is rolled, the score is the number on the top face.	
(a)	Dice A is rolled once.	
	Find the probability that the score is not 3.	
		[1]
(b)	Dice A is rolled twice.	
	Find the probability that the score is 0 both times.	
		[2]
(c)	Dice A is rolled 60 times.	
	Calculate an estimate of the number of times the score is 0.	

.....[1]

- (d) Dice A and dice B are each rolled once. The product of the scores is recorded.
 - (i) Complete the possibility diagram.

Dice A [2] (ii) Find the probability that the product of the scores is[1][1]

(e) Eva keeps rolling dice B until 1 is scored.


(b) greater than 3.

(a) 2,

Find the probability that this happens on the 5th roll.

5 Kiah plays a game.

The game involves throwing a coin onto a circular board. Points are scored for where the coin lands on the board.

If the coin lands on part of a line or misses the board then 0 points are scored. The table shows the probabilities of Kiah scoring points on the board with one throw.

Points scored	20	10	5	0
Probability	x	0.2	0.3	0.45

	***	- 4			-	
(a)	Find	the	va.	me.	of	Y
,						-

x =		[2	1
-----	--	----	---

(b) Kiah throws a coin fifty times.

Work out the expected number of times she scores 5 points.

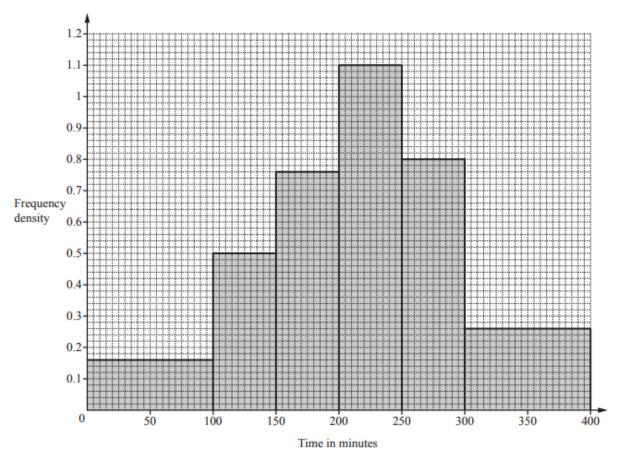
.....[1]

(c) Kiah throws a coin two times.

Calculate the probability that

(i) she scores either 5 or 0 with her first throw,

.....[2]

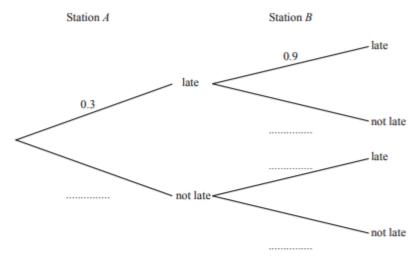

(ii) she scores 0 with her first throw and 5 with her second throw,

[2]

	(111)	she scores	a total of 15 pc	oints with her tv	vo throws.			
								 [3]
(d)	Kıal	h throws a c	oin three times					
	Calc	culate the pr	obability that s	he scores a tota	l of 10 points v	vith her three	throws.	
								 [5]

4			put into a machi ability that the m					
	(a)	Adh	ira puts 2 coins i	nto the machine.				
		(i)	Calculate the pr	obability that the	machine rejects	both coins.		
		(ii)	Calculate the pr	obability that the	e machine accepts		n.	[2]
	(b)	Raj	puts 4 coins into	the machine.				[1]
					hine rejects exac	tly one coin.		
	(c)	The	table shows the	amount of money	y, \$a, received for		y for 200 days.	[3]
Amou	ınt (S	§a)	200 < a ≤ 250	250 < a ≤ 300	300 < a ≤ 350	350 < <i>a</i> ≤ 400	400 < <i>a</i> ≤ 450	450 < <i>a</i> ≤ 50
requ	ency	7	13	19	27	56	62	23
		Calo	culate an estimate	e of the mean am	ount of money re			[4]

(d) The histogram shows the length of time that 200 cars were parked.


(i) Calculate the number of cars that were parked for 100 minutes or less.

(ii) Calculate the percentage of cars that were parked for more than 250 minutes.

.....% [2]

- A train stops at station A and then at station B.
 If the train is late at station A, the probability that it is late at station B is 0.9.
 If the train is not late at station A, the probability that it is late at station B is 0.2.
 - The probability that the train is late at station A is 0.3.

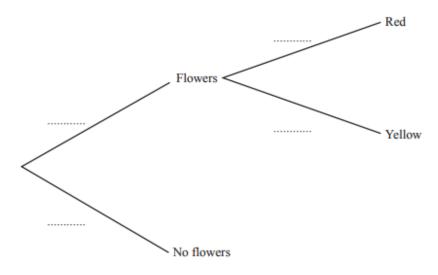
(b) (i) Find the probability that the train is late at one or both of the stations.

[3	3							
----	---	--	--	--	--	--	--	--

[2]

(ii) This train makes 250 journeys.

Find the number of journeys that the train is expected to be late at one or both of the stations.



(c) The train continues to station C.

The probability that it is late at all 3 stations is 0.27.

Describe briefly what this probability shows.

- 5 The probability that a plant will produce flowers is $\frac{7}{8}$. The flowers are either red or yellow. If the plant produces flowers, the probability that the flowers are red is $\frac{3}{4}$.
 - (a) (i) Complete the tree diagram by writing a probability beside each branch.

(ii) Calculate the probability that a plant, chosen at random, will produce red flowers.

.....[2]

[2]

	(iii)	Two plants are chosen at random.	
		Calculate the probability that both will produce red flowers.	
			[2]
(b)	Alp	honse buys 200 of these plants.	
	Calo	culate the number of plants that are expected to produce flowers.	
			[2]
(c)	Gab	riel has 1575 plants with red flowers.	
		mate the total number of plants that Gabriel has.	
		The same same same same same same same sam	
			[2]

Sandra has a fair eight-sided spinner. The numbers on the spinner are 3, 4, 4, 4, 5, 5, 6 and 8. Sandra spins the spinner twice and records each number it lands on.	2 4 W
Find the probability that	
(a) both numbers are 8,	
(b) the two numbers are not both 8,	[2]
	[1]
(c) one number is odd and one number is even,	[1]
	[2]

(d)	the total of the two numbers is at least 13,	
		[3]
(e)	the second number is bigger than the first number.	
		[3]

6(a)(i)	$\frac{1}{3}$ oe		1	
6(a)(ii)	100		1	FT their (a)(i) × 300 to at least 3 sf or rounded to the nearest integer
6(b)(i)	$\frac{2}{15}$ oe		3	M2 for $4 \times \frac{1}{6} \times \frac{1}{5}$ oe
				or M1 for $k\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or list or indication of 4 correct pairs
6(b)(ii)	$\frac{3}{5}$ oe		3	M2 for $1 - \frac{4}{6} \times \frac{3}{5}$
				or $2\left(\frac{2}{6} \times \frac{4}{5}\right) + \frac{2}{6} \times \frac{1}{5}$ oe
				or $\frac{2}{6} + \left(\frac{4}{6} \times \frac{2}{5}\right)$ oe
				or M1 for $\frac{4}{6} \times \frac{3}{5}$ oe seen or $\frac{2}{6} \times \frac{4}{5} [\times 2]$ oe seen
				or $\frac{2}{6} \times \frac{1}{5}$ oe seen
				or correct identification of 18 pairs or space diagram oe
9(d)	7		2	7 6
)(u)	$\frac{7}{260}$ oe			M1 for $\frac{7}{40} \times \frac{6}{39}$ oe
9(e)	$\frac{14}{95}$ oe		2	FT their Venn diagram
	93			M1 for $\frac{8}{20} \times \frac{7}{19}$
2(b)(i)	$\frac{14}{120}$ oe	1		
2(b)(ii)	$\frac{21}{20060}$ oe	4	M	3 for $3\left(\frac{14}{120} \times \frac{7}{119} \times \frac{6}{118}\right)$
			or	M2 for $\frac{14}{120} \times \frac{7}{119} \times \frac{6}{118}$ isw
				M1 for $\frac{14}{120}$, $\frac{7}{119}$, $\frac{6}{118}$
			1	fter 0 scored, SC1 for answer $\frac{343}{864000}$ or
			1	343 88000 oe
3(c)	87 3980 oe	2	M	I1 for $\frac{30}{200} \times \frac{29}{199}$ oe
	3700		_	200 199

7(a)	0.1	1	
7(b)(i)	0.2 oe 0.6, 0.3, 0.1 oe	2	B1 for 0.2 B1 for 0.6, 0.3, 0.1
7(b)(ii)	0.48 oe	2	FT their 0.6 from tree diagram M1 for $0.8 \times their$ 0.6
7(b)(iii)	0.28 oe	3	M2 for $0.2 + 0.8 \times 0.1$ oe or M1 for 0.2 or 0.8×0.1 or $0.8 \times (0.6 + 0.3)$
7(c)	0.32 oe	3	M2 for $0.8 \times 0.2 + 0.2 \times 0.8$ oe M1 for one of these products
7(a)(i)	$\frac{3}{4}$, $\frac{1}{4}$ $\frac{2}{5}$, $\frac{3}{5}$ $\frac{2}{5}$, $\frac{3}{5}$	2	B1 for one correct pair
7(a)(ii)	$\frac{3}{10}$ oe	2	FT their tree diagram M1 for $\frac{3}{4} \times \frac{2}{5}$
7(a)(iii)	$\frac{11}{20}$ oe	3	M2 for $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{2}{5}$ or M1 for $\frac{3}{4} \times \frac{3}{5}$ or $\frac{1}{4} \times \frac{2}{5}$
7(b)	$\frac{36}{125}$ oe	3	M2 for $\left(\frac{2}{5}\right)^2 \times \frac{3}{5} \times 3$ oe or M1 for $\left(\frac{2}{5}\right)^2 \times \frac{3}{5}$
7(c)	$\frac{3}{28}$ oe	2	M1 for $\frac{3}{4} \times \frac{1}{7}$
9(c)(i)	$\frac{9}{25}$ oe	:	M1 for $\frac{15}{25} \times \frac{15}{25}$ oe
9(c)(ii)	$\frac{16}{25}$ oe		1 FT 1 – their (c)(i)
9(d)	$\frac{17}{20}$ oe		M2 for $1 - \frac{10}{25} \times \frac{9}{24}$ oe or for $\frac{15}{25} \times \frac{14}{24} + \frac{15}{25} \times \frac{8}{24} + \frac{15}{25} \times \frac{2}{24} + \frac{8}{25} \times \frac{15}{24}$ $+ \frac{2}{25} \times \frac{15}{24}$ oe or M1 for one correct relevant product

6(a)(i)	$\frac{1}{3}$ oe	1	
6(a)(ii)	0	1	
6(a)(iii)	$\frac{1}{6}$ oe	1	
6(b)(i)	$\frac{1}{15}$ oe	2	M1 for $\frac{2}{6} \times \frac{1}{5}$ or equivalent method
6(b)(ii)	$\frac{4}{15}$ oe	3	M2 for $\frac{2}{6} \times \frac{1}{5} + \frac{3}{6} \times \frac{2}{5}$ or equivalent method
			or M1 for $\frac{2}{6} \times \frac{1}{5}$ oe seen or $\frac{3}{6} \times \frac{2}{5}$ oe seen
6(c)	$\frac{7}{18}$ oe	3	M2 for $\left(\frac{1}{6}\right)^2 + \left(\frac{2}{6}\right)^2 + \left(\frac{3}{6}\right)^2$ oe
			or M1 for one correct product seen or sample space with 14 correct pairs identified
4(a)(i)	$\frac{1}{11}$ oe		1
4(a)(ii)	$\frac{1}{110}$ oe		M1 for $\frac{1}{11} \times \frac{1}{10}$ oe
4(a)(iii)	$\frac{4}{55}$ oe		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			or M1 for $\left(\frac{2}{11} \times \frac{1}{10}\right)$ or $\left(\frac{3}{11} \times \frac{2}{10}\right)$ seen oe
4(b)(i)	$\frac{1}{165}$ oe		$\frac{2}{11}$ M1 for $\frac{3}{11} \times \frac{2}{10} \times \frac{1}{9}$ oe
4(b)(ii)	$\frac{1}{5}$ oe		
			or M3 for $3\left(\frac{3}{11}\times\frac{2}{10}\times\frac{8}{9}\right)$
			or M2 for $3\left(\frac{2}{11} \times \frac{1}{10} \times \left[\frac{9}{9}\right]\right)$ or
			$\frac{3}{11} \times \frac{2}{10} \times \frac{8}{9} \text{ oe}$
			or M1 for $\frac{2}{11} \times \frac{1}{10} \times \left[\frac{k}{9}\right]$ where k is 3, 6 or 9
		+	-

3(a)	$\frac{5}{9}$ oe	1	
3(b)	80 153 oe	3	M2 for $2 \times \frac{10}{18} \times \frac{8}{17}$ oe or M1 for $\frac{10}{18} \times \frac{8}{17}$ oe If 0 scored, SC1 for $\frac{160}{324}$ oe
3(c)	11/51 oe	4	M3 for $\frac{10}{18} \times \frac{9}{17} \times \frac{8}{16} + \frac{8}{18} \times \frac{7}{17} \times \frac{6}{16}$ oe or M2 for $\frac{10}{18} \times \frac{9}{17} \times \frac{8}{16}$ oe or $\frac{8}{18} \times \frac{7}{17} \times \frac{6}{16}$ oe or M1 for $\frac{10}{18}, \frac{9}{17}, \frac{8}{16}$ or $\frac{8}{18}, \frac{7}{17}, \frac{6}{16}$ If 0 scored, SC1 for $\frac{1512}{5832}$ oe
6(a)	90 30 10	2	B1 for any one correct
6(b)	110	1	FT their 110 in Venn diagram
6(c)	$\frac{10}{240}$ oe	1	FT #heir10 240
6(d)	870 1560 oe	3	M2 for $\frac{their30}{40} \times \frac{their30-1}{39}$ or M1 for $\frac{p}{q} \times \frac{p-1}{q-1}$ $p < q$ or for $\frac{their30}{40}$ soi

3(a)	1-r	1	
3(b)(i)	(1-r)(1.3-r)[=0.4]	1	FT their(a) dep on (a) being an expression in r
3(b)(ii)	$1.3 - 1.3r - r + r^2$ or better nfww	M1	FT their (b)(i)
	$0.9 - 2.3r + r^2 [= 0]$ OR	М1	Strict FT their expansion to a quadratic then equating to 0.4 and then collecting to 3 terms on 'one side'
	$13 - 13r - 10r + 10r^2 = 4 \text{ oe}$		Strict FT <i>their</i> expansion to a quadratic = 0.4 all multiplied by 10
	$10r^2 - 23r + 9 = 0$	A1	no errors or omissions seen
3(b)(iii)	(5r-9)(2r-1) = 0	В2	or B2 for e.g. $5r(2r-1) - 9(2r-1)$ and then $5r-9=0$ and $2r-1=0$
			or B1 for $5r(2r-1) - 9(2r-1) [= 0]$ or $2r(5r-9) - 1(5r-9) [= 0]$ or $(5r+a)(2r+b) [= 0]$ where a, b are integers and $ab = +9$ or $2a + 5b = -23$
			If 0 scored, SC1 for $5r-9$ and $2r-1$ seen but not in factorised form
	$[r=] \frac{9}{5}$ oe $[r=] \frac{1}{2}$ oe	B1	
3(b)(iv)	$0.8 \text{ or } \frac{4}{5} \text{ oe}$	1	
8(a)(i)	$\frac{x-1}{x+2}$	2	B1 for either numerator or denominator correct
8(a)(ii)(a)	$\frac{x}{x+3} \times \frac{x-1}{x+2} = \frac{7}{15}$	B	FT their (a)(i) = $\frac{7}{15}$
	15x(x-1) = 7(x+3)(x+2)	Mi	Removes all algebraic fractions FT their equation if in comparable form
	$15x^2 - 15x = 7x^2 + 21x + 14x + 42$	M	Correctly expands all brackets FT their equation if in comparable form
	$[8x^2 - 50x - 42 = 0]$ $4x^2 - 25x - 21 = 0$	A	With no errors or omissions seen and one further stage seen after final M1
8(a)(ii)(b)	(4x+3)(x-7) = 0	M	M1 for $4x(x-7) + 3(x-7)$ or $x (4x+3) - 7(4x+3)$ or for $(4x+a)(x+b)$ where either $ab = -21$ or $4b+a=-25$ If 0 scored, SC1 for $4x+3$ and $x-7$ seen but not in factorised form
	7 and $-\frac{3}{4}$	В	
8(a)(ii)(c)	7	1	FT their positive solution

8(b)	$\frac{1}{6}$ oe	4	or M	for $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} + \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ 12 for $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}$ or $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ 11 for $\frac{5}{9}, \frac{4}{8}, \frac{3}{7}$ seen or $\frac{4}{9}, \frac{3}{8}, \frac{2}{7}$ seen scored, SC1 for $\frac{5^3 + 4^3}{729}$ oe
8(a)(i)	$\frac{4}{5}$ oe	1		
8(a)(ii)	$\frac{4}{5}$ oe	1		
8(b)(i)	$\frac{6}{20}$ oe nfww	3	or N	for $\frac{1}{5} \times \frac{3}{4} + \frac{3}{5} \times \frac{1}{4}$ oe or $2 \times \frac{1}{5} \times \frac{3}{4}$ oe M1 for $\frac{1}{5} \times \frac{3}{4}$ alone or $\frac{3}{5} \times \frac{1}{4}$ alone or for wer $\frac{3}{20}$ nfww er 0 scored, SC1 for answer $\frac{6}{25}$
8(b)(ii)	$\frac{8}{20}$ oe nfww	3	2×f or 2 thei	for $1 - \frac{4}{5} \times \frac{3}{4}$ or $\frac{1}{5} \times 1 + \frac{4}{5} \times \frac{1}{4}$ oe or $\frac{1}{5} \times 1$ $2 \times \frac{1}{5} \times \frac{3}{4} + 2 \times \frac{1}{5} \times \frac{1}{4}$ or $\frac{1}{5} \times \frac{1}{5} \times \frac{1}{4}$ or $\frac{1}{5} \times \frac{1}{5} \times \frac{1}{4}$ or answer $\frac{2 \text{ or } 4 \text{ or } 5 \text{ or } 6 \text{ or } 7}{20}$ oe nfww er 0 scored, SC1 for answer $\frac{8}{25}$
8(a)(i)	$\frac{2}{5}$ oe		2	M1 for $\frac{4}{6} \times \frac{3}{5}$
8(a)(ii)	$\frac{3}{5}$ oe		1	FT $1 - their \frac{12}{30}$ oe
8(b)	$\frac{5}{7}$ oe nfww			M3 for $\frac{2}{7} + \frac{5}{7} \times \frac{2}{6} + \frac{5}{7} \times \frac{4}{6} \times \frac{2}{5}$ oe or for $1 - \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5}$ oe or M1 for each of $\frac{5}{7} \times \frac{2}{6}$ and $\frac{5}{7} \times \frac{4}{6} \times \frac{2}{5}$ oe or completed tree diagram with appropriate probabilities shown

9(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 B1 for each pair
9(b)	5/48 oe		M1FT for their $\frac{5}{8} \times their \frac{1}{6}$
9(c)	304/480 oe		3 M2 for their $\frac{5}{8} \times their \frac{5}{6} + their \frac{3}{8} \times their \frac{3}{10}$ oe or M1 for their $\frac{5}{8} \times their \frac{5}{6}$ or their $\frac{3}{8} \times their \frac{3}{10}$
4(a)(i)	$\frac{8}{20}$ oe	3	M2 for $\frac{2}{5} \times \frac{1}{4} + \frac{3}{5} \times \frac{2}{4}$ or M1 for one of these products OR M1 for probability tree identifying all 20 outcomes with the correct 8 identified OR M1 for completed possibility space / 2-way table identifying the 8 possible outcomes out of 20, oe SC1 for $\frac{13}{25}$ with replacement
4(a)(ii)	9/25 oe	3	M2 for $\frac{-}{5} \times \frac{-}{5} + \frac{-}{5} \times \frac{-}{5}$ oe or M1 for one of these products OR M1 for probability tree identifying all 25 outcomes with the correct 9 identified OR M1 for completed possibility space / 2-way table identifying the 9 possible outcomes out of 25, oe
4(a)(iii)	Jojo and e.g. $\frac{40}{100} > \frac{36}{100}$	1	1 1FT their (i) and (ii) dep on being in range 0 to 1
4(b)	$\frac{24}{60}$ oe	3	M2 for $\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$ oe or M1 for any one correct product OR M1 for 4, 5, 4 and 5, 4, 4 and 5, 5, 4 clearly identified on a tree or in a list

	1		
6(a)(i)	14		1
6(a)(ii)	16		1
6(a)(iii)	$\frac{20}{462}$ oe		M2 for $\frac{5}{22} \times \frac{4}{21}$ or M1 for $\frac{5}{22}$ seen
12(a)(i)	$\frac{10}{20} \times \frac{9}{19} \text{ oe}$	M2	B1 for $\frac{9}{19}$ oe seen
12(a)(ii)	62/95 oe	4	M3 for $\frac{6}{20} \times \frac{14}{19} + \frac{10}{20} \times \frac{10}{19} + \frac{4}{20} \times \frac{16}{19}$ oe or $1 - \frac{6}{20} \times \frac{5}{19} - \frac{10}{20} \times \frac{9}{19} - \frac{4}{20} \times \frac{3}{19}$ oe or M2 for the sum of two products of different flavours isw
12(b)	$\frac{5}{57}$ oe	3	M2 for $N \times \left(\frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right) + \frac{4}{20} \times \frac{3}{19} \times \frac{2}{18}$ oe or for $3\left(\frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right)$ oe or $1 - \{N \times \left(\frac{4}{20} \times \frac{16}{19} \times \frac{15}{18}\right) + \frac{16}{20} \times \frac{15}{19} \times \frac{14}{18}\}$ oe or M1 for $\frac{4}{20} \times \frac{3}{19} \times \frac{k}{18}$ oe seen

7(a)(i)	$\frac{3}{5} > \frac{1}{4}$ oe or $\frac{12k}{20k}$ and $\frac{5k}{20k}$	1		
	or 0.6 and 0.25 or 60% and 25%			
7(a)(ii)	$\frac{11}{20}$ oe	3	,	$\frac{3}{4} + \frac{2}{5} \times \frac{1}{4}$ oe $\frac{1}{4} - \frac{2}{5} \times \frac{3}{4}$ oe
				$\frac{3}{5} \times \frac{3}{4}$ or $\frac{2}{5} \times \frac{1}{4}$ oe part of a larger product)
7(b)(i)	$\frac{6}{60}$ oe	2	M1 for $\frac{3}{5}$	$\times \frac{2}{4} \times \frac{1}{3}$ oe 1, SC1 for answer $\frac{27}{125}$ oe
			II o scorec	125
7(b)(ii)	0	1	Accept $\frac{0}{60}$	<u></u>
7(c)	11	3	2	2 2 1
/(0)	$\frac{11}{25}$ oe		M2 for $\frac{3}{5}$	$\times \frac{3}{5} + \frac{2}{5} \times \frac{1}{5}$ oe
			or $1 - \frac{3}{5} \times$	$\frac{2}{5} - \frac{2}{5} \times \frac{4}{5}$ oe
			,	$\frac{3}{5} \times \frac{3}{5}$ or $\frac{2}{5} \times \frac{1}{5}$ or for a correct tree
			outcomes	ıll 25 outcomes with the 11 correct identified
	,	•		1/ 1 1 1)
4 (a)	$\frac{1}{8}$ oe		3	M2 for $\frac{1}{2} \left(1 - \frac{1}{6} - \frac{1}{4} - \frac{1}{3} \right)$ oe
				or M1 for $\frac{1}{6} + \frac{1}{4} + \frac{1}{3}$ seen oe or idea that
				all sum to 1
(b)	7/12 oe		2	M1 for $\frac{1}{3} + \frac{1}{4}$ oe
(c) (i)	1/16 oe		2	M1 for $\frac{1}{4} \times \frac{1}{4}$ oe
(ii)	$\frac{2}{24}$ oe		3	M2 for $2 \times \frac{1}{6} \times \frac{1}{4}$ oe
				or M1 for $\frac{1}{6} \times \frac{1}{4}$ oe
(d)	12		1	

6(a)	$\frac{1}{3}, \frac{6}{7}$ correctly placed	1		
	$\frac{4}{7}, \frac{3}{7}$ correctly placed	1		
6(b)	$\frac{2}{21}$ oe	2	M1 for $\frac{2}{3}$	$\times \frac{1}{7}$
6(c)(i)	$\frac{15}{21}$ oe	3	M2 for $\frac{2}{3}$	$\times \frac{6}{7} + \frac{1}{3} \times \frac{3}{7}$ oe
			or M1 for	$\frac{2}{3} \times \frac{6}{7}$ oe or $\frac{1}{3} \times \frac{3}{7}$ oe seen
6(c)(ii)	50	2FT		their (c)(i)) rounded up or down to integer
6(d)	$\frac{10}{243}$ oe	2	M1 for $70 \times their$ (c)(i) M1 for $\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} [\times k]$ oe nfww where k is positive integer less than 5	
9(a)(i)	52		2	M1 for $(1-0.35) \times 80$ oe
9(a)(ii)	84		1	
9(b)(i)	$\frac{27}{729}$ oe		2	M1 for $\frac{3}{9} \times \frac{3}{9} \times \frac{3}{9}$
9(b)(ii)	$\frac{144}{729}$ oe		3	M2 for $\frac{2}{9} \times \frac{3}{9} \times \frac{4}{9} \times 6$ oe or M1 for $\frac{2}{9} \times \frac{3}{9} \times \frac{4}{9}$ oe isw
9(c)	$\frac{42}{60}$ oe		4	M3 for $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times 3$ oe
				or M2 for $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times 3$ oe
				or for $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \left(\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}\right) [\times 2]$
				or M1 for $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}$ or $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$ oe isw
				or for PPG, PGP, GPP and PPP selected soi
7(a)	5/6		1	
7(b)	$\frac{4}{36}$ oe		2 M1	for $\frac{2}{6} \times \frac{2}{6}$
7(c)	20		1	

7(d)(i)	Diagram completed correctly	2	B1 fo	or 3 correct columns or for 4 correct rows
	x x 3 3 3 9 x x 2 2 2 6 x x 2 2 2 6 x x 2 2 2 6 x x 1 1 1 3			
7(d)(ii)(a)	$\frac{9}{36}$ oe	1FT	FT ti	heir (d)(i)
7(d)(ii)(b)	4/36 oe	1FT	FT ti	heir (d)(i)
7(e)	512 7776 oe	2	M1 f	for $\left(\frac{4}{6}\right)^k \times \frac{2}{6}$ oe $k = 3, 4$ or 5 only
5 (a)	0.05 oe		2	M1 for 1 – (0.2 + 0.3 + 0.45) oe
(b)	15		1	
(c) (i	0.75 oe		2	M1 for 0.45 + 0.3 oe
(ii	0.135 oe		2	M1 for 0.45 × 0.3 oe
(iii	0.12 oe		3	M2 for 2(0.3 × 0.2) oe or M1 for 0.3 × 0.2 or 0.06 oe nfww
(d)	0.243 oe		5	M4 for 3(0.45 × 0.45 × 0.2) + 3(0.3 × 0.3 × 0.45) oe
				or M3 for 3(0.45 × 0.45 × 0.2) or 3(0.3 × 0.3 × 0.45) oe
				or M2 for 0.45 × 0.45 × 0.2 and 0.3 × 0.3 × 0.45
				or M1 for 0.45 × 0.45 × 0.2 or 0.3 × 0.3 × 0.45 oe or for identifying the correct 6 outcomes e.g. 10 0 0, 0 0 10, 0 10 0, 5 5 0, 5 0 5, 0 5 5
4 (a) (i	0.0025 or $\frac{1}{400}$ oe		2	M1 for 0.05 ² oe
(ii)	0.9975 or $\frac{399}{400}$ oe		1FT	FT for 1 – (their (a)(i)) oe
(b)	0.171 or 0.1714 to 0.1715 or —	0 000	3	M2 for $4(0.05 \times 0.95^3)$ oe
				M1 for 0.05×0.95^3 oe seen or for the 4 combinations correctly identified

((c)		376 nfww	4	M1 for midpoints soi (condone 1 error or omission) (225, 275, 325, 375, 425, 475) and M1 for use of Σfx with x in correct interval including both boundaries (condone 1 further error or omission) and M1 (dependent on second M) for $\Sigma fx \div 200$
((d)	(i)	16	1	
		(ii)	33	2	M1 for $0.8 \times 50 + 0.26 \times 100$
7 ((a)		0.7, 0.1 oe correctly placed 0.2, 0.8 oe correctly placed	1 1	
	(b)	(i)	0.44 nfww oe	3	M2 for 1 -their $0.7 \times their 0.8$ or for $0.3 + their 0.7 \times their 0.2$ oe or M1 for their $0.7 \times their 0.8$ or for two of 0.3×0.9 , $0.3 \times their 0.1$, their $0.7 \times their 0.2$
		(ii)	110	1FT	FT 250 × <i>their</i> (b)(i)
((c)		If late at first two stations then certain to be late at station C oe	1	Indication of certain event (allow 1 or 100% probability or sure) at third station if late at first two stations

5 (a) (i)	$\frac{3}{4}$, $\frac{1}{4}$	2	B1 for any 2 correct
	$\frac{7}{8}$, $\frac{1}{8}$		
(ii)	$\frac{21}{32}$ oe	2	M1 for $\frac{7}{8} \times \frac{3}{4}$ oe
(iii)	$\frac{441}{1024}$ oe	2FT	M1 for $\left(\frac{7}{8} \times \frac{3}{4}\right)^2$ or their $((\mathbf{a})(\mathbf{ii}))^2$ oe
(b)	175	2	M1 for 200 × $\frac{7}{8}$
(c)	2400	2	M1 for 1575 ÷ their(a)(ii)

5 (a	a)	1 64	2	M1 for $\frac{1}{8} \times \frac{1}{8}$
(1	b)	63 64	1FT	FT 1 – their (a)
(6	c)	$\frac{30}{64}$ oe $\frac{7}{64}$	2	M1 for $[2 \times]$ $\frac{3}{8} \times \frac{5}{8}$ oe
(6	d)	7 64	3	M2 for $\frac{1}{8} \times \frac{1}{8} + \frac{1}{8} \times \frac{3}{8} + \frac{3}{8} \times \frac{1}{8}$ oe
				or M1 for identifying combinations required, (8, 8) and (8, 6) and (8, 5) or identifying 6 out of the 7 possible outcomes
(6	e)	24/64 oe	3	M2 for $\frac{1}{8} \times \frac{7}{8} + \frac{3}{8} \times \frac{4}{8} + \frac{2}{8} \times \frac{2}{8} + \frac{1}{8} \times \frac{1}{8}$ oe or $\frac{7}{8} \times \frac{1}{8} + \frac{6}{8} \times \frac{1}{8} + \frac{4}{8} \times \frac{2}{8} + \frac{1}{8} \times \frac{3}{8}$ oe
				or M1 for the sum of any two correct products from above oe isw