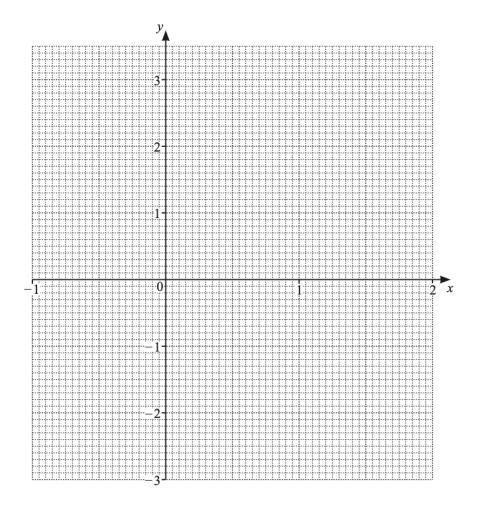
Mathematics Paper 4


Algebra & Graphs

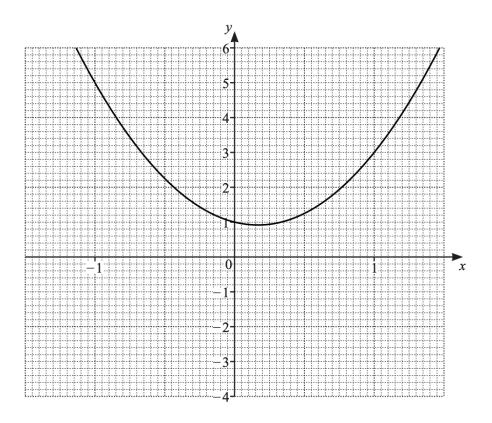
QUESTIONS

2 (a) The table shows some values for $y = 2x^3 - 4x^2 + 3$.

x	-1	-0.5	0	0.5	1	1.5	2
у	-3	1.75				0.75	3

- (i) Complete the table. [3]
- (ii) On the grid, draw the graph of $y = 2x^3 4x^2 + 3$ for $-1 \le x \le 2$.

[4]


(iii) Use your graph to solve the equation $2x^3 - 4x^2 + 3 = 1.5$.

 $x = \dots$ or $x = \dots$ [3]

(iv) The equation $2x^3 - 4x^2 + 3 = k$ has only one solution for $-1 \le x \le 2$. Write down a possible integer value of k.

.....[1]

(b)

- (i) On the grid, draw the tangent to the curve at x = 1. [1]
- (ii) Use your tangent to estimate the gradient of the curve at x = 1.
 -[2]
- (iii) Write down the equation of your tangent in the form y = mx + c.

y = [2]

5	(a)	Write as a single fraction in its simplest form.
		$\frac{x+3}{x-3} - \frac{x-2}{x+2}$

	[4]

(b)
$$2^{12} \div 2^{\frac{k}{2}} = 32$$

Find the value of k.

$$k = \dots$$
 [2]

(c)	Expand and simplify.	
		(y+3)(y-4)(2y-1)

(d) Make x the subject of the formula.
$$x = \frac{3+x}{y}$$

$$x =$$
 [3]

7	(a)	Naga has <i>n</i> marbles. Panav has three times as many marbles as Naga. Naga loses 5 marbles and Panav buys 10 marbles. Together they now have more than 105 marbles. Write down and solve an inequality in <i>n</i> .		
	<i>a</i> .>			[3]
	(b)	y is inversely proportional to x^2 . When $x = 4$, $y = 7.5$.		
		Find y when $x = 5$.		
			<i>y</i> =	[3]

 $g(x) = x^2 \qquad h(x) = 3^{-x}$ f(x) = 4x - 1**10** (a) Find in its simplest form (i) f(x-3),[1] (ii) g(5x).[1] **(b)** Find $f^{-1}(x)$. $f^{-1}(x) = \dots [2]$ (c) Find the value of hh(l), correct to 4 significant figures.

.....[3]

(d)	(i)	Show that $g(3x-2) - h(-3)$ can be written as $9x^2 - 12x - 23$.	
			[2]
	(ii)	Use the quadratic formula to solve $9x^2 - 12x - 23 = 0$. Give your answers correct to 2 decimal places.	
(e)	Fine	x = or $x =$ d x when $f(61) = h(x)$.	[4]
		<i>x</i> =	[2]

11 A curve has equation $y = x^3 - 3x + 4$	11	A curve has equ	ation y = x	$x^3 - 3x + 4$.
--	----	-----------------	--------------	------------------

(a) Work out the coordinates of the two stationary points.

(,)	
(,)	[5]

(b) Determine whether each stationary point is a maximum or a minimum. Give reasons for your answers.

[3]

3	(a)	$s = ut + \frac{1}{2}at^2$
-	()	2

Find the value of s when u = 5.2, t = 7 and a = 1.6.

s =	 [2]

- (b) Simplify.
 - (i) 3a-5b-a+2b

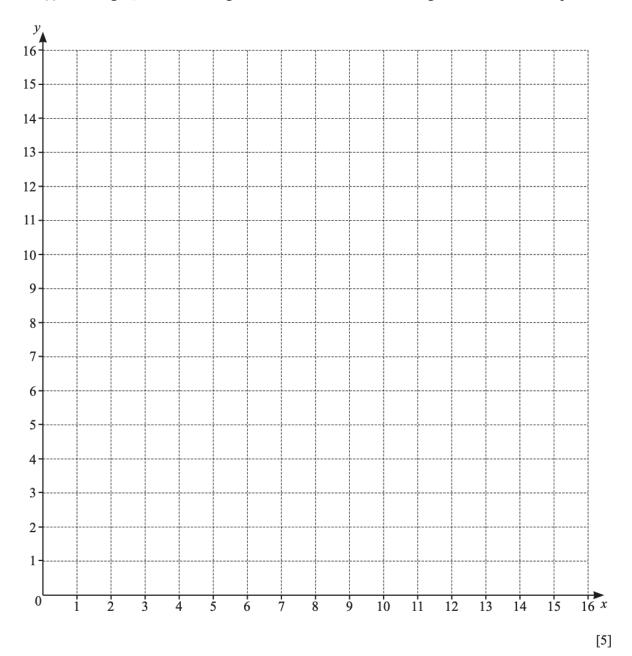
.....[2]

(ii) $\frac{5}{3x} \times \frac{9x}{20}$

.....[2]

- (c) Solve.
 - (i) $\frac{15}{x} = -3$

 $x = \dots$ [1]


(ii)
$$4(5-3x) = 23$$

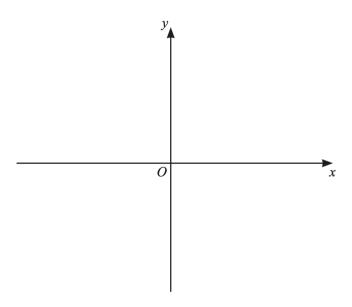
$$x = \dots$$
 [3]

(d)	Si	Simplify. $ (27x^9)^{\frac{2}{3}} $		
(e)	Ех	Expand and simplify. $(3x - 5y)(2x + y)$	[2]	
		theem makes baskets and mats.	[2]	
		ch week he makes x baskets and y mats. The makes fewer than 10 mats.		
		e makes fewer than 10 mats. The number of mats he makes is greater than or equal to the number of mats he makes is greater than or equal to the number of mats.	nber of baskets he makes.	
	(a)	One of the inequalities that shows this information is $y < 0$	10.	
		Write down the other inequality.		
				[1]
	(b)	He takes $2\frac{1}{4}$ hours to make a basket and $1\frac{1}{2}$ hours to make a Each week he works for a maximum of 22.5 hours.	a mat.	
		Show that $3x + 2y \le 30$.		

[2]

(c) On the grid, draw three straight lines and shade the unwanted regions to show these inequalities.

(d) He makes \$40 profit on each basket he sells and \$28 profit on each mat he sells.


Calculate the maximum profit he can make each week.

\$ [2]

(c) (i) Write $x^2 + 10x + 14$ in the form $(x+a)^2 + b$.

.....[2]

(ii) On the axes, sketch the graph of $y = x^2 + 10x + 14$, indicating the coordinates of the turning point.

[3]

10	(a)	A rhombus $ABCD$ has a diagonal AC where A is the point $(-3, 10)$ and C is the point $(4, -4)$.				
		(i)	Calculate the length AC .			
			[3	1		
		(ii)	Show that the equation of the line AC is $y = -2x + 4$.	-		
		()				
		(***)		.]		
		(iii)	Find the equation of the line <i>BD</i> .			
			[4	.]		

(b) A curve has the equation y	$=x^3+8x^2$	+5x.
---	-------------	------

(i) Work out the coordinates of the two turning points.

(ii) Determine whether each of the turning points is a maximum or a minimum. Give reasons for your answers.

f(x) = 3x + 2 $g(x) = x^2 + 1$ $h(x) = 4^x$ (a) Find h(4).[1] **(b)** Find fg(1).[2] (c) Find gf(x) in the form $ax^2 + bx + c$[3] **(d)** Find *x* when f(x) = g(7).

(e) Find $f^{-1}(x)$.

 $x = \dots [2]$

 $f^{-1}(x) = \dots [2]$

(f)	Find	$\frac{g(x)}{f(x)} + x$.
------------	------	---------------------------

Give your answer as a single fraction, in terms of x, in its simplest form.

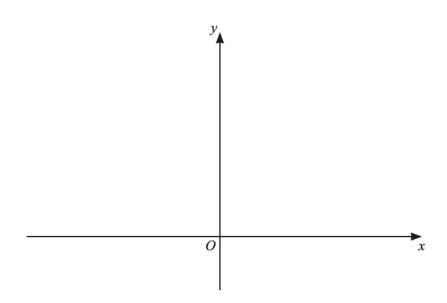
.....[3]

(g) Find x when $h^{-1}(x) = 2$.

x = [1]

9 (a) (i) Write $x^2 + 8x - 9$ in the form $(x+k)^2$

гот
 [4]


(ii) Use your answer to **part** (a)(i) to solve the equation $x^2 + 8x - 9 = 0$.

$$x = \dots$$
 or $x = \dots$ [2]

(b) The solutions of the equation $x^2 + bx + c = 0$ are $\frac{-7 + \sqrt{61}}{2}$ and $\frac{-7 - \sqrt{61}}{2}$. Find the value of b and the value of c.

$$c = \dots$$
 [3]

(c) (i)

On the diagram,

(a) sketch the graph of
$$y = (x-1)^2$$
, [2]

(b) sketch the graph of
$$y = \frac{1}{2}x + 1$$
. [2]

(ii) The graphs of $y = (x-1)^2$ and $y = \frac{1}{2}x + 1$ intersect at A and B. Find the length of AB.

10	(a)	$y = x^4 - 4x^3$
----	-----	------------------

(i) Find the value of y when x = -1.

$$y =$$
 [2]

(ii) Find the two stationary points on the graph of $y = x^4 - 4x^3$.

(,)
(,) [6]

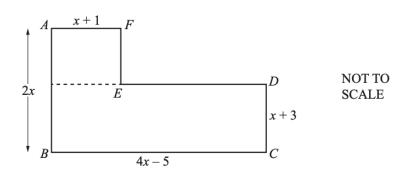
(b) $y = x^p + 2x^q$ $\frac{dy}{dx} = 11x^{10} + 10x^4$, where $\frac{dy}{dx}$ is the derived function.

Find the value of p and the value of q.

$$p = \dots$$
 $q = \dots$ [2]

4	(a)	Solve the inequality.	0 110 50 5
			$3m+12 \leq 8m-5$

(b) Solve the equation.
$$\frac{2x+5}{3-x} = \frac{14}{15}$$


$$x =$$
 [3]

(c)	Solve the simultaneous equations.
	You must show all your working.

$$y = 4 - x$$
$$x^2 + 2y^2 = 67$$

$$x = \dots, y = \dots$$
 $x = \dots, y = \dots$
[6]

All the lengths in this question are in centimetres.

The diagram shows a shape ABCDEF made from two rectangles. The total area of the shape is $342\,\mathrm{cm}^2$.

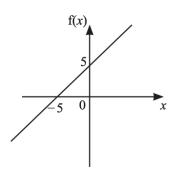
(a) Show that $x^2 + x - 72 = 0$.

[5]

(b) Solve by factorisation. $x^2 + x - 72 = 0$

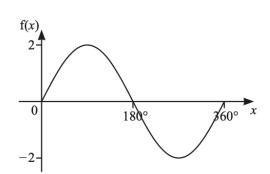
$$x^2 + x - 72 = 0$$

$$x =$$
...... or $x =$ [3]

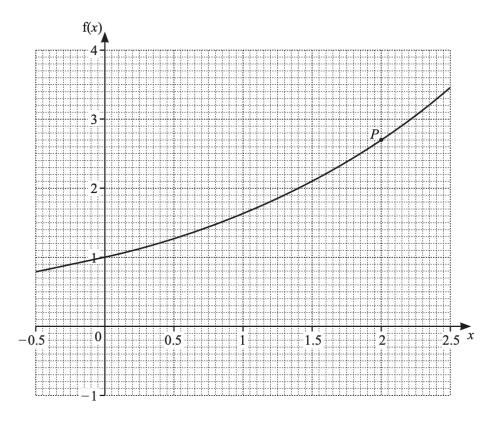

9	(a)	The	equation of line <i>L</i> is $3x-8y+20=0$.
		(i)	Find the gradient of line L .
			[2]
		(22)	
		(ii)	Find the coordinates of the point where line L cuts the y -axis.
			, ran
			(, ,) [1]

D)	1 ne	coordinates of P are $(-3, 8)$ and the coordinates of Q are $(9, -2)$.	
	(i)	Calculate the length PQ .	
			[3]
	(ii)	Find the equation of the line parallel to PQ that passes through the point $(6, -1)$.	
			[2]
	(iii)	Find the equation of the perpendicular bisector of PQ .	[3]
	(11)	That the equation of the perpendicular observer of Fig.	
			[4]

10 (a) The diagrams show the graphs of two functions.


Write down each function.

(i)


$$f(x) = \dots [2]$$

(ii)

$$f(x) = \dots [2]$$

(b)

The diagram shows the graph of another function.

By drawing a suitable tangent, find an estimate for the gradient of the function at the point P.

.....[3]

f(x) = 7x - 4

 $g(x) = \frac{2x}{x-3}, x \neq 3$

 $h(x) = x^2$

(a) Find g(6).

.....[1]

(b) Find fg(4).

.....[2]

(c) Find fh(x).

.....[1]

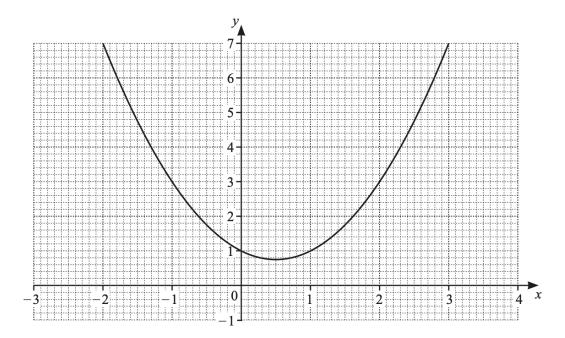
(d) Find $\frac{f(x)}{2} + g(x)$.

Give your answer as a single fraction, in terms of x, in its simplest form.

.....[3]

(e)	Find the value of x when $f(x+2) = -11$.	
(f)	Find the values of p that satisfy $h(p) = p$.	$x = \dots $ [2]
(-)		
		[2]

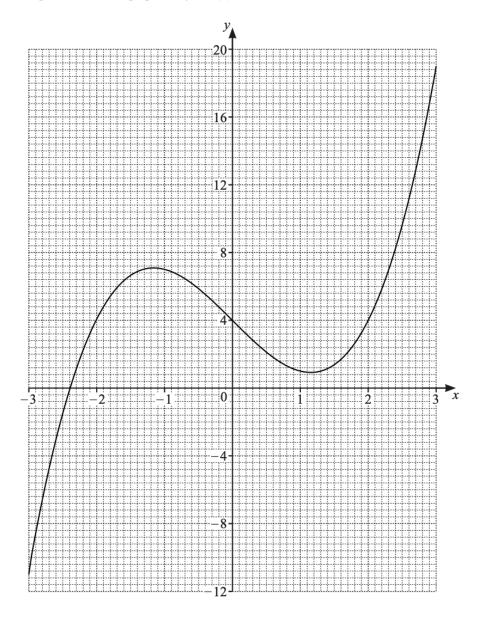
12	(a)	A curve has equation	$y = 4x^3 - 3x + 3$.
----	-----	----------------------	-----------------------


(i) Find the coordinates of the two stationary points.

(......) and (......) [5]

(ii) Determine whether each of the stationary points is a maximum or a minimum. Give reasons for your answers.

[3]


(b) The graph of $y = x^2 - x + 1$ is shown on the grid.

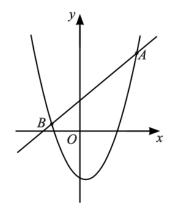
By drawing a suitable line on the grid, solve the equation $x^2 - 2x - 2 = 0$.

x =...... or x =..... [3]

5 (a) The diagram shows the graph of y = f(x) for $-3 \le x \le 3$.

(i) Solve f(x) = 14.

 $x = \dots$ [1]


(ii) By drawing a suitable tangent, find an estimate of the gradient of the graph at the point (-2, 4).

.....[3]

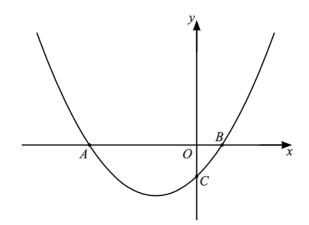
(iii) By drawing a suitable straight line on the grid, solve f(x) = 2x - 2 for $-3 \le x \le 3$.

x = [3]

(b)

NOT TO SCALE

The diagram shows a curve with equation $y = 2x^2 - 2x - 7$. The straight line with equation y = 3x + 5 intersects the curve at the points A and B.


Find the coordinates of the points A and B.

A (.....)

B(.....) [5]

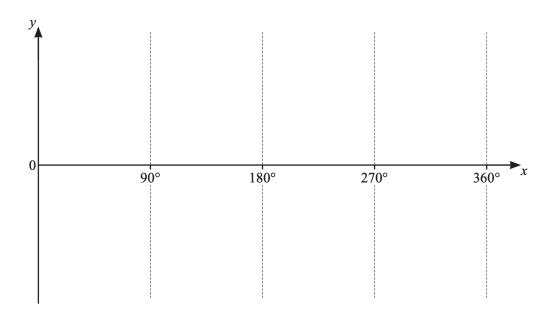
8	(a)	Factorise completely.	$3a^2b-ab^2$	
	(b)	Solve the inequality.	3x + 12 < 5x - 3	[2]
	(c)	Simplify. $ (3x^2y^4)^3 $		[2]
	(d)	Solve. $\frac{2}{x} = \frac{6}{2-x}$		[2]
	(e)	Expand and simplify.	$x = \dots $ $(x-2)(x+5)(2x-1)$	[3]
				[3]

10 (a)

NOT TO SCALE

The diagram shows a sketch of the curve $y = x^2 + 3x - 4$.

(i) Find the coordinates of the points A, B and C.


A	()
	١,		-	 	-	-	_	,	-	-	_	-			-	-	-	,

(ii) Differentiate $x^2 + 3x - 4$.

	[2]
•••••	[4]

(iii) Find the equation of the tangent to the curve at the point (2, 6).

(b)

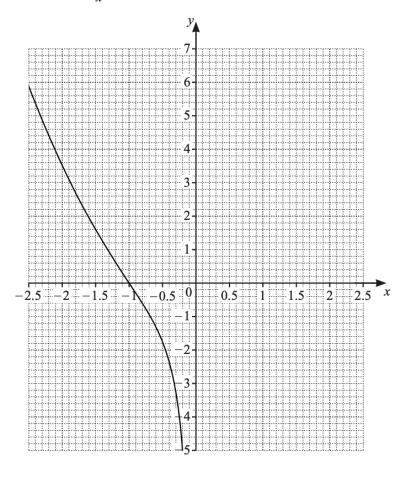
- (i) On the diagram, sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- (ii) Solve the equation $5 \tan x = -7$ for $0^{\circ} \le x \le 360^{\circ}$.

 $x = \dots$ or $x = \dots$ [3]

5		ned sells different types of cake in his shop. cost of each cake depends on its type and its size.
	Eve	ry small cake costs x and every large cake costs $(2x + 1)$.
	(a)	The total cost of 3 small lemon cakes and 2 large lemon cakes is \$12.36.
		Find the cost of a small lemon cake.
		\$ [3]
	(b)	The cost of 18 small chocolate cakes is the same as the cost of 7 large chocolate cakes.
		Find the cost of a small chocolate cake.
		\$ [3]
	(c)	The number of small cherry cakes that can be bought for \$4 is the same as the number of large
		cherry cakes that can be bought for \$13.
		Find the cost of a small cherry cake.
		\$ [3]

(d)	d) Petra spends \$20 on small coffee cakes and \$10 on large coffee cakes. The total number of cakes is 45.							
	Write an equation in terms of x . Solve this equation to find the cost of a small coffee cake. Show all your working.							
	\$[7]							

7
$$y = x^2 + \frac{1}{x}, \ x \neq 0$$


(a) Complete the table.

x	0.2	0.3	0.5	1	1.5	2	2.5
у	5.0	3.4	2.3		2.9		6.7

[2]

(b) On the grid, draw the graph of $y = x^2 + \frac{1}{x}$ for $0.2 \le x \le 2.5$.

The graph of $y = x^2 + \frac{1}{x}$ for $-2.5 \le x \le -0.2$ has been drawn for you.

[4]

(i)
$$x^2 + \frac{1}{x} = -2$$

$$x =$$
 [1]

(ii)
$$x^2 + \frac{1}{x} + x - 1 = 0$$

$$x =$$
 [2]

(d) k is an integer and the equation $x^2 + \frac{1}{x} = k$ has three solutions.

Write down a possible value of k.

$$k = \dots$$
 [1]

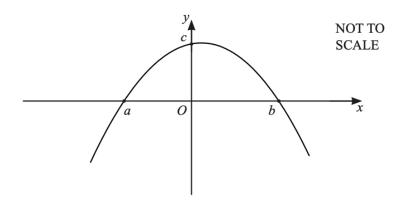
10		$f(x) = x^2 + 1$	g(x) = 1 - 2x	$h(x) = \frac{1}{x}, \ x \neq 0$	$j(x) = 5^x$	
	(a)	Find the value of				
		(i) f(3),				
						[1]
		(ii) gf(3).				
						[1]
	(b)	Find $g^{-1}(x)$.				
	, ,					

$$g^{-1}(x) = \dots [2]$$

(c) Find x when h(x) = 2.

$$x = \dots$$
 [1]

(d) Find g(x)g(x) - gg(x), giving your answer in the form $ax^2 + bx + c$.


.....[4]

(e)	Find $hh(x)$, giving your answer in its simplest form.	
(f)		 [1]
(g)	Find x when $j^{-1}(x) = 2$.	 [1]
	x =	 [1]
(h)	j(x) = hg(-12)	
	Find the value of x .	
	<i>x</i> =	 [2]

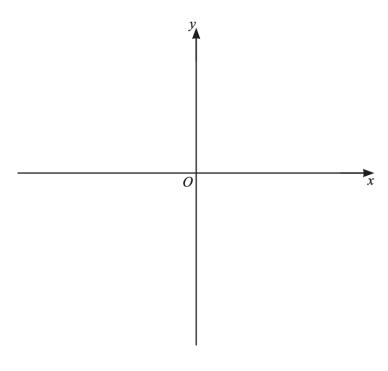
7 (a) (i) Factorise $24 + 5x - x^2$.

.....[2]

(ii) The diagram shows a sketch of $y = 24 + 5x - x^2$.

Work out the values of a, b and c.

a =


b =

 $c = \dots [3]$

(iii) Calculate the gradient of $y = 24 + 5x - x^2$ at x = -1.5.

.....[3]

(b) (i) On the diagram, sketch the graph of $y = (x+1)(x-3)^2$. Label the values where the graph meets the x-axis and the y-axis.

(ii) Write $(x+1)(x-3)^2$ in the form $ax^3 + bx^2 + cx + d$.

.....[3]

[4]

9	(a)	Find the integer values that satisfy the inequality $2 < 2x \le$	10.	
	(b)	Factorise completely. (i) $6y^2 - 15xy$		[2]
		(ii) $y^2 - 9x^2$		[2]
	(c)	Simplify. $\frac{3}{x-1} - \frac{2}{2x+1}$		[2]
				[3]

(d)	The straight line	y = 3x + 2	intersects the curve	$y = 2x^2 + 7x - 11$	at two points.
	Find the coordina Give your answer	tes of these tes correct to 2	two points. 2 decimal places.		
				()
				() [6]

f(x) = 4-3x $g(x) = x^2 + x$ $h(x) = 3^x$ 10

(a) Find fh(2).

.....[2]

(b) Find $f^{-1}(x)$.

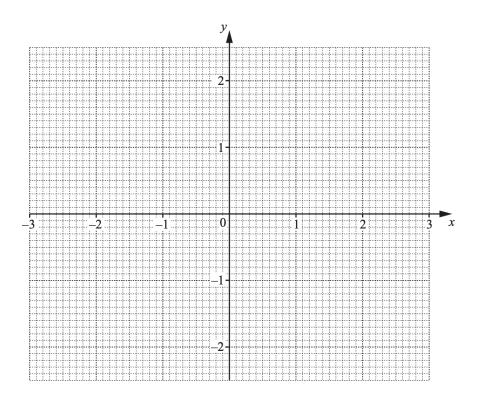
 $f^{-1}(x) = \dots$ [2]

- (c) Simplify.
 - (i) f(1-2x)

.....[2]

(ii) gf(x) - 9g(x)

.....[4]


Find the value of k.

$$k = \dots$$
 [2]

5 The table shows some values for $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

x	-3	-2	-1.5	-1	0	1	1.5	2	3
у			2.0	1.7	0		-2.0	-1.6	

(b) On the grid, draw the graph of $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

[4]

(c) On the grid opposite, draw a suitable straight line to solve the equation $\frac{3}{10}x^3 - 2x = \frac{1}{2}(1-x)$ for $-3 \le x \le 3$.

$$x = \dots$$
 or $x = \dots$ [4]

(d) For $-3 \le x \le 3$, the equation $\frac{3}{10}x^3 - 2x = 1$ has *n* solutions.

Write down the value of n.

$$n = \dots$$
 [1]

.....[1]

(b) Work out ff(2).

.....[2]

(c) Find gg(x), giving your answer in its simplest form.

.....[2]

(d) Find $g^{-1}(x)$.

 $g^{-1}(x) = \dots$ [2]

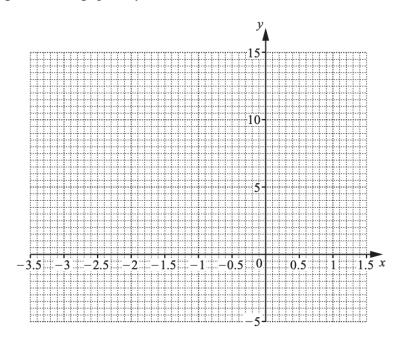
(e) Write g(x) - f(x) as a single fraction in its simplest form.

.....[3]

(f)	(i)	Show that	hg(x) = 19	simplifies to	$16x^2 - 20x + 3 = 0.$
(1)	(1)	Show that	$\operatorname{Hg}(x) = 1$	simplifies to	$10x 20x \mid 3 = 0.$

[3]

(ii) Use the quadratic formula to solve $16x^2 - 20x + 3 = 0$. Show all your working and give your answers correct to 2 decimal places.


x = or x = [4]

10	(a)	Solve the simultaneous equations. You must show all your working.	6x + 5y = 27 $5x - 3y = 44$
	(b)	y is inversely proportional to $(x+3)^2$. When $x = 2$, $y = 8$. Find y when $x = 7$.	$x = \dots y = \dots [4$
	(c)	Solve the inequality. $3(x-2) < 7(x-2)$	<i>y</i> =[3 +2)
			[3

2 The table shows some values for $y = x^3 + 3x^2 + 2$.

x	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5
y	-4.1		5.1	6	5.4	4	2.6		2.9		12.1

(b) On the grid, draw the graph of $y = x^3 + 3x^2 + 2$ for $-3.5 \le x \le 1.5$.

[4]

(c) Use your graph to solve the equation $x^3 + 3x^2 + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x = \dots$$
 [1]

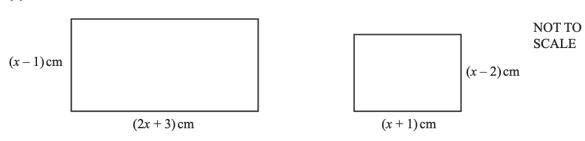
(d) By drawing a suitable straight line, solve the equation $x^3 + 3x^2 + 2x + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x =$$
 [2]

(e) For $-3.5 \le x \le 1.5$, the equation $x^3 + 3x^2 + 2 = k$ has three solutions and k is an integer. Write down a possible value of k.

$$k = \dots$$
 [1]

7	(a)	$s = ut + \frac{1}{2}at^2$
---	-----	----------------------------


(i) Find s when t = 26.5, u = 104.3 and a = -2.2. Give your answer in standard form, correct to 4 significant figures.

$$s = \dots$$
 [4]

(ii) Rearrange the formula to write a in terms of u, t and s.

$$a =$$
 [3]

(b)

The difference between the areas of the two rectangles is $62 \, \mathrm{cm}^2$.

(i) Show that $x^2 + 2x - 63 = 0$.

[3]

(ii) Factorise $x^2 + 2x - 63$.

.....[2]

(iii) Solve the equation $x^2 + 2x - 63 = 0$ to find the difference between the perimeters of the two rectangles.

..... cm [2]

9 f(x) = 7x - 2 $g(x) = x^2 + 1$ $h(x) = 3^x$

(a) Find gh(2).

.....[2]

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots$ [2]

(c) $gg(x) = ax^4 + bx^2 + c$

Find the values of a, b and c.

a =

b =

 $c = \dots$ [3]

(d) Find x when hf(x) = 81.

x = [3]

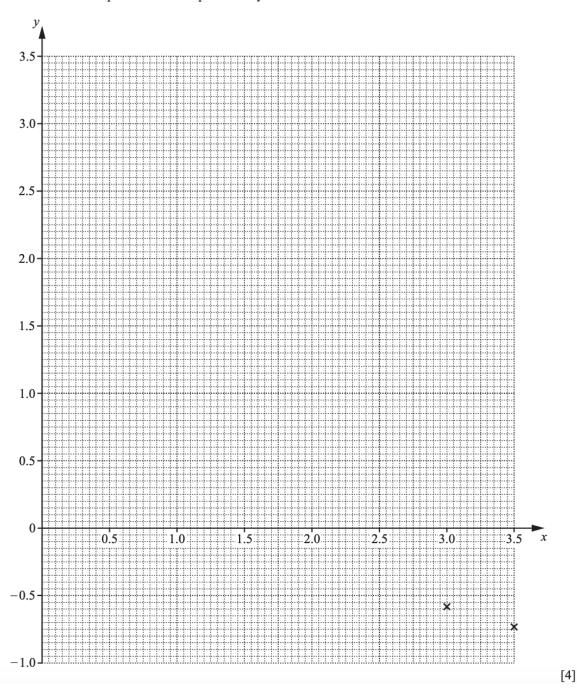
(iii) Solve by factorisation $10r^2 - 23r + 9 = 0$.

 $r = \dots$ or $r = \dots$ [3]

(a)	The	equation of a straight line is $2y = 3x + 4$.	
	(i)	Find the gradient of this line.	
	(ii)	Find the co-ordinates of the point where the line crosses the <i>y</i> -axis.	[1]
		()	[1]
(b)	The	diagram shows a straight line L .	
		<i>y</i>	
	(i)	Find the equation of line L .	[31]
	(ii)	Find the equation of the line perpendicular to line L that passes through $(9, 3)$.	[3]
	(11)	Find the equation of the line perpendicular to line L that passes through (3, 3).	
			[3]

	A is the point $(8, 5)$ and B is the point $(-4, 1)$.				
(i)	Calculate the length of AB.				
		[2]			
		[3]			
(ii)	Find the co-ordinates of the midpoint of AB .				
		() [2]			
		, , , , , , , , , , , , , , , , , , , ,			
		, , , , , , , , , , , , , , , , , , , ,			

5 The table shows some values of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.


x	0.15	0.2	0.5	1	1.5	2	2.5	3	3.5
y	3.30		0.88		-0.04		-0.43	-0.58	-0.73

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.

The last two points have been plotted for you.

(c) Use your graph to solve the equation $\frac{1}{2x} - \frac{x}{4} = \frac{1}{2}$ for $0.15 \le x \le 3.5$.

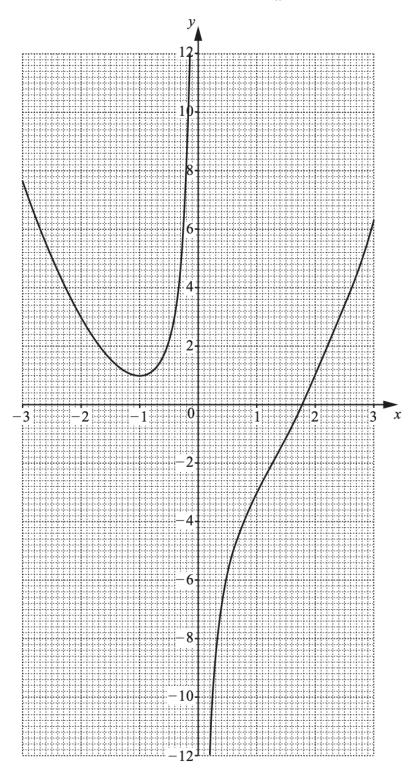
$$x =$$
.....[1]

- (d) (i) On the grid, draw the line y = 2-x. [2]
 - (ii) Write down the x co-ordinates of the points where the line y = 2 x crosses the graph of $y = \frac{1}{2x} \frac{x}{4}$ for $0.15 \le x \le 3.5$.

$$x = \dots$$
 and $x = \dots$ [2]

(e) Show that the graph of $y = \frac{1}{2x} - \frac{x}{4}$ can be used to find the value of $\sqrt{2}$ for $0.15 \le x \le 3.5$.

[2]


6	(a)	Expand and simplify. $(x+7)(x-3)$	
	(b)	Factorise completely. (i) $15p^2q^2 - 25q^3$	 [2]
		(ii) $4fg + 6gh + 10fk + 15hk$	 [2]
	((iii) $81k^2 - m^2$	 [2]
	(c)	Solve the equation. $3(x-4) + \frac{x+2}{5} = 6$	 [2]

x = [4]

2	(a)	Solve. $5x - 17 = 7x + 3$	
	(b)	Find the integer values of n that satisfy this inequality. $-7 < 4n \le 8$	<i>x</i> =[2]
	(c)	Simplify. (i) $a^3 \times a^6$	[3]
		(ii) $(5xy^2)^3$	[1]
	,	(iii) $\left(\frac{27x^{12}}{64y^3}\right)^{-\frac{1}{3}}$	[2]

.....[3]

5 The diagram shows the graph of y = f(x) where $f(x) = x^2 - \frac{2}{x} - 2$, $x \ne 0$.

	(i)	f(1),								
	(ii)	ff(-2).								 [1]
(b)		the grid oppo $\frac{2}{x} - 7 = -3$			straight li	ine to solv	e the equa			 [2]
(c)	Вус	drawing a su	itable tang	ent, find a	ın estimate					 [4]
										 [3]
(d)	(i)	Complete t	he table fo	$\mathbf{r} \ y = \mathbf{g}(x)$) where g	$g(x) = 2^{-x}$	for -3 ≤	$x \leq 3$.		
		x	-3	-2	-1	0	1	2	3	
		у			2	1	0.5		0.125	
										[3]
	(ii)	On the grid	l opposite,	draw the g	graph of y	y = g(x).				[3]
	(iii)	Use your g	raph to find	d the posi t	tive soluti	on to the e	equation f(g(x) = g(x)).	
							<i>x</i> :	=		 [1]

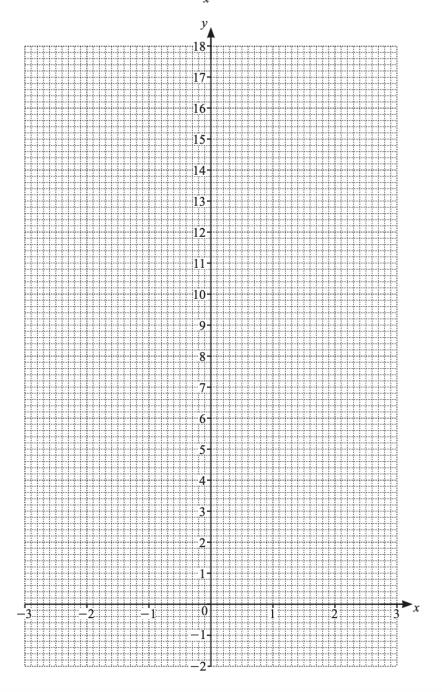
(a) Use the graph to find

,	A st	raight line joins the points $A(-2, -3)$ and $C(1, 9)$.	
	(a)	Find the equation of the line AC in the form $y = mx + c$.	
	(b)	Calculate the acute angle between AC and the x -axis.	<i>y</i> =[3]
	(c)	ABCD is a kite, where AC is the longer diagonal of the kite. B is the point (3.5, 2). (i) Find the equation of the line BD in the form $y = mx + c$.	[2]
		(ii) The diagonals AC and BD intersect at $(-0.5, 3)$. Work out the co-ordinates of D .	y =[3]
		(ii) The diagonals AC and BD intersect at $(-0.5, 3)$.	

	((b) Solve by factorisation. $4x^2 - 25x - 21 = 0$
		$x = \dots \text{ or } x = \dots $ [3]
7	(a)	Oranges cost 21 cents each. Alex buys x oranges and Bobbie buys $(x+2)$ oranges. The total cost of these oranges is \$4.20.
		Find the value of x .
	(b)	x = The cost of one ruler is r cents.
		The cost of one protractor is p cents.
		The total cost of 5 rulers and 1 protractor is 245 cents. The total cost of 2 rulers and 3 protractors is 215 cents.
		Write down two equations in terms of r and p and solve these equations to find the cost of one protractor.
		cents [5]

(i)	Write an equation, in terms of x, and show that it simplifies to $5x^2 - 23x + 12 = 0$.
	[3]
(ii)	Factorise $5x^2 - 23x + 12$.
(11)	Tuttorise 5x 25x 12.
	[2]
(iii)	Solve the equation $5x^2 - 23x + 12 = 0$.
	$x = \dots $ or $x = \dots $ [1]
(iv)	Write down Carol's walking speed during the final 6km.
	km/h [1]

(c) Carol walks 12 km at x km/h and then a further 6 km at (x-1) km/h. The total time taken is 5 hours.


(a)	ite down three inequalities, in terms of x and/or y , to show this information.	
	,	. [3]
(b)	mall car can carry 4 people and a large car can carry 6 people. e day, the largest number of people to be carried is 60.	
	by that $2x+3y \le 30$.	
		[1]
(c)		
	y 0 1	
	9	
	8	
	7	
	6	
	5	
	4	
	3	
	2	
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x	
	shading the unwanted regions on the grid, show and label the region R that satisfies all qualities.	four [6]
(d)	Find the number of small cars and the number of large cars needed to carry exactly 60 people	e.
	small cars, large car	s [1]
	When the company uses 7 cars, find the largest number of people that can be carried.	. [-]
	when the company uses 7 cars, find the largest number of people that can be carried.	
		. [2]

3	A line joins $A(1, 3)$ to $B(5, 8)$.				
	(a)	(i)	Find the midpoint of AB .		
				() [2	2]
		(ii)	Find the equation of the line AB. Give your answer in the form $y = mx + c$.		
				y =[2	3]

5 The table shows some values of $y = \frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x}$, $x \neq 0$.

x	-3	-2	-1	-0.5	-0.3	0.2	0.3	0.5	1	2	3
y	5.3	3.3		8.1	17.8		4.5	0.1	-0.5	1.3	

- (a) Complete the table.
- **(b)** On the grid, draw the graph of $y = \frac{x^2}{2} + \frac{1}{x^2} \frac{2}{x}$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

[5]

[3]

(c)	Use your graph to solve	$\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} \le 0.$
-----	-------------------------	--

 $\leq x \leq$	 Г 2 1
 ~ ~ ~	 [~]

(d) Find the smallest positive integer value of k for which $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = k$ has two solutions for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

(e) (i) By drawing a suitable straight line, solve $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = 3x + 1$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

$$x =$$
 [3]

(ii) The equation $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = 3x + 1$ can be written as $x^4 + ax^3 + bx^2 + cx + 2 = 0$. Find the values of a, b and c.

$$c = \dots$$
 [3]

7

$$f(x) = 7 - 2x$$

$$f(x) = 7 - 2x$$
 $g(x) = \frac{10}{x}, x \neq 0$ $h(x) = 27^x$

$$h(x) = 27^x$$

(a) Find

(i)
$$f(-3)$$
,

.....[1]

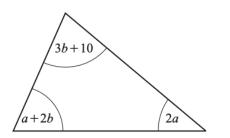
(ii) hg(30),

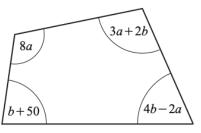
.....[2]

(iii) $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$
 [2]

(b) Solve. g(2x+1) = 4


$$g(2x+1) = 4$$


$$x =$$
 [3]

(e) S	Simpli	fy, giving	your answe	er as a single	e fraction. $\frac{1}{f(x)} + g(x)$)			
						-(")				
((d) F	ind h	⁻¹ (19683).					 	. [3]
8	(a)	Mak	$x \in p$ the su	bject of					 	. [1]
			5p + 7 =							
		(ii)	$y^2 - 2p^2$	=h.				<i>p</i> =	 	[2]

p = [3]

2 (a) The diagram shows a triangle and a quadrilateral. All angles are in degrees.

NOT TO SCALE

(i) For the triangle, show that 3a+5b=170.

[1]

(ii) For the quadrilateral, show that 9a + 7b = 310.

[1]

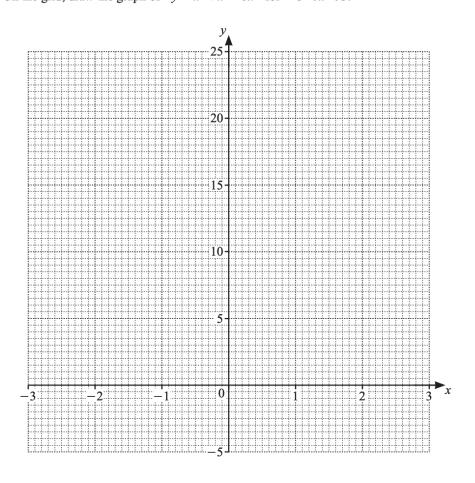
(iii) Solve these simultaneous equations. Show all your working.

a =

b = [3]

(iv) Find the size of the smallest angle in the triangle.

.....[1]


(b)	Solve the equation 6x	<i>x</i> −3 =−12.		
(c)	Rearrange $2(4x-y) =$	= 5x - 3 to make y the subject	x =[[2]
(d)	Simplify. $(27x^9)^{\frac{3}{3}}$	23	y = [[3]
(e)	Simplify. $\frac{x^2 + 5x}{x^2 - 25}$	<u>.</u>	[[2]
			[[3]

3 The table shows some values for $y = x^3 + x^2 - 5x$.

x	-3	-2	-1.5	-1	0	1	1.5	2	2.5	3
y	-3	6	6.4		0		-1.9	2	9.4	

(a) Complete the table. [3]

(b) On the grid, draw the graph of $y = x^3 + x^2 - 5x$ for $-3 \le x \le 3$.

[4]

(c)	Use your graph to solve the equation $x^3 + x^2 - 5x = 0$.
(d)	x =
(e)	
	$k = \dots $ [1]

9	. Eind	f(x) = 2x - 3	$g(x) = 9 - x^2$	$h(x) = 3^x$
(a)	(i)	f(4),		
	(ii)	hg(3),		[1]
	(iii)	g(2x) in its simplest form,		[2]
	(iv)	fg(x) in its simplest form.		[1]
(b)) Find	$1 f^{-1}(x)$.		[2]
				$f^{-1}(x) = \dots$ [2]

(c) Find x when 5f(x) = 3.

x = [2]

	(d)	Solve	the	equation	gf(x) = -16
--	-----	-------	-----	----------	-------------

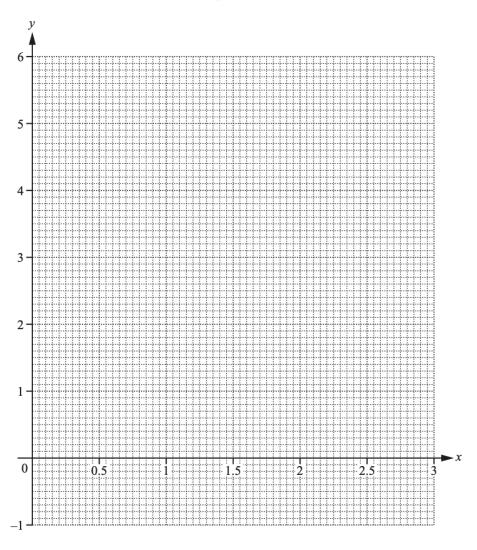
$$x = \dots$$
 or $x = \dots$ [4]

(e) Find x when $h^{-1}(x) = -2$.

$$x =$$
 [1]

10 Solve.

$$\frac{1}{x} - \frac{2}{x+1} = 3$$


Show all your working and give your answers correct to 2 decimal places.

3 The table shows some values for $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

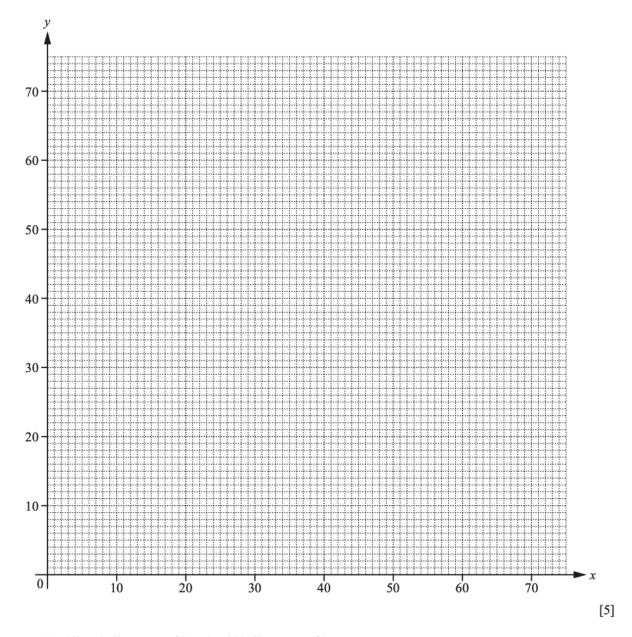
x	0.125	0.25	0.375	0.5	0.75	1	1.5	2	2.5	3
у	5.25	1.5	0.42			0	0.67	1.5		3.33

(a) Complete the table. [3]

(b) On the grid, draw the graph of $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

[4]

(c)	Use your graph to solve $2x + \frac{1}{x} - 3 \ge 2$.	
(d)	The equation $\frac{1}{x} = 7 - 3x$ can be solved using your graph in pa	[3] art (b) and a straight line.
	(i) Write down the equation of this straight line.	
	(ii) Draw this straight line and solve the equation $\frac{1}{x} = 7 - 3x$.	[2]

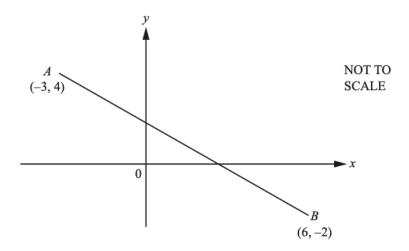

 $x = \dots$ or $x = \dots$ [3]

2	
(a) Make t the subject of the formula $s = k - t^2$.	
	$t = \dots [2]$
(b) (i) Factorise $x^2 - 25$.	
(6) (1) Taktorise × 22.	
2	[1]
(ii) Simplify $\frac{x^2 - 25}{x^2 - 2x - 35}$.	
x 2x 33	
	[3]
	[3]
(c) Write as a single fraction in its simplest form.	
$\frac{x-8}{x} + \frac{3x}{x+1}$	
X X 1 1	
	ra1
	[3]
(d) Find the integer values of n that satisfy the inequality.	
$18-2n < 6n \leqslant 30+n$	
	503
	[3]

He bu	puys	
•	more gold balloons than silver balloons	
•	at least 15 silver balloons	
•	less than 50 gold balloons	
•	a total of no more than 70 balloons.	
(a)	Write down four inequalities, in terms of x and/or y , to show this information.	
		[4]

Klaus buys x silver balloons and y gold balloons for a party.

(b) On the grid, show the information from part (a) by drawing four straight lines and shading the unwanted regions.



(c) Silver balloons cost \$2 and gold balloons cost \$3.

Calculate the most that Klaus could spend.

\$ [2]

10 (a)

Calculate the length of AB.

[3]
---	----

(b) The point P has co-ordinates (10,12) and the point Q has co-ordinates (2,-4).

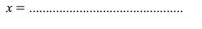
Find

(i) the co-ordinates of the mid-point of the line PQ,

(.....) [2]

(ii) the gradient of the line PQ,

.....[2]


(iii) the equation of a line perpendicular to PQ that passes through the point (2,3).

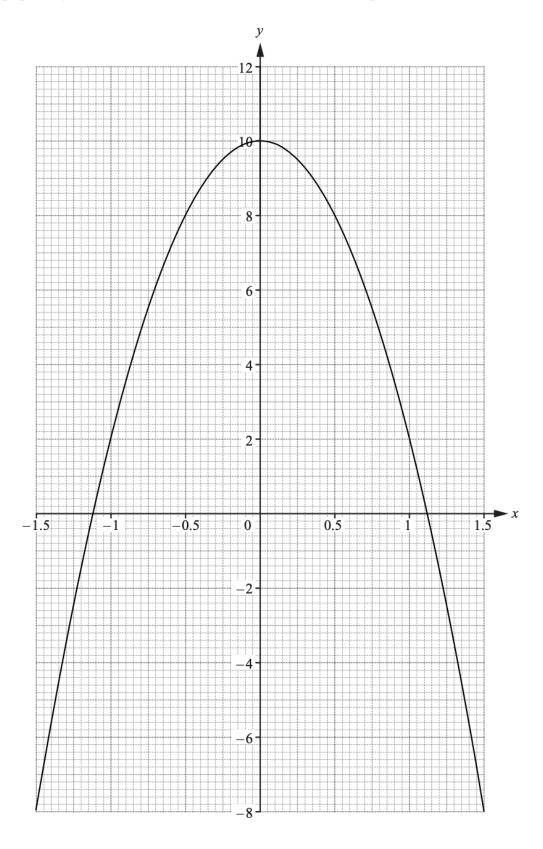
.....[3]

5	(a)	Fact	torise.	
		(i)	$2mn+m^2-6n-3m$	
				[2]
		(ii)	$4y^2 - 81$	
				[1]
		(iii)	$t^2 - 6t + 8$	[-]
				[2]
	(b)	Rea	x arrange the formula to make x the subject.	[2]
			$k = \frac{2m - x}{x}$	

(c) Solve the simultaneous equations. You must show all your working.

$$\begin{aligned}
\frac{1}{2}x - 3y &= 9\\ 5x + y &= 28
\end{aligned}$$

$$y =$$
.....[3]


(d)
$$\frac{3}{m+4} - \frac{4}{m} = 6$$

(i) Show that this equation can be written as $6m^2 + 25m + 16 = 0$.

(ii) Solve the equation $6m^2 + 25m + 16 = 0$. Show all your working and give your answers correct to 2 decimal places.

$$m = \dots$$
 or $m = \dots$ [4]

7 The graph of $y = 10 - 8x^2$ for $-1.5 \le x \le 1.5$ is drawn on the grid.

(a)	Write down the equation of the line of symmetry of the graph.	

 F17
111

(b) On the grid opposite, draw the tangent to the curve at the point where x = 0.5. Find the gradient of this tangent.

(c) The table shows some values for $y = x^3 + 3x + 4$.

х	-1.5	-1	-0.5	0	0.5	1	1.5
у	-3.9				5.6	8	11.9

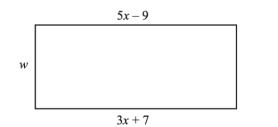
(ii) On the grid opposite, draw the graph of
$$y = x^3 + 3x + 4$$
 for $-1.5 \le x \le 1.5$. [4]

(d) Show that the values of x where the two curves intersect are the solutions to the equation $x^3 + 8x^2 + 3x - 6 = 0$.

[1]

(e) By drawing a suitable straight line, solve the equation $x^3 + 5x + 2 = 0$ for $-1.5 \le x \le 1.5$.

 $x = \dots [3]$


4	(a)	Sim	plify.
		(i)	$(3p^2)^5$

	 				 		•		•	•	•	•				•	•	•				•	•	•	•	•	•	•	•			•	•	[2	2	

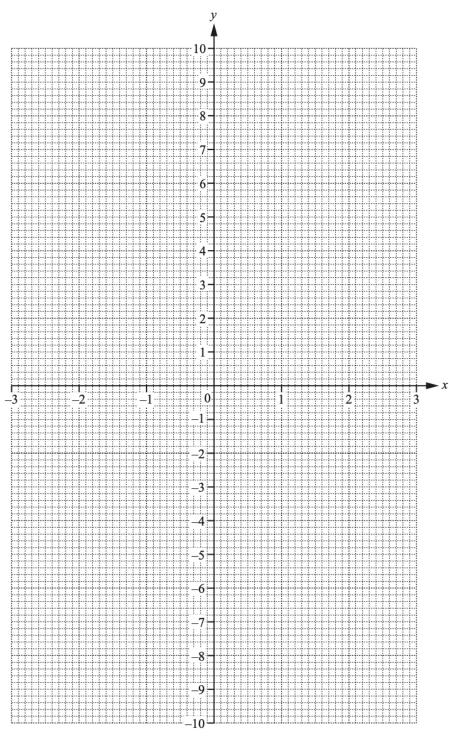
(ii)
$$18x^2y^6 \div 2xy^2$$

(iii)
$$\left(\frac{5}{m}\right)^{-2}$$

(b) In this part, all measurements are in metres.

NOT TO SCALE

The diagram shows a rectangle. The area of the rectangle is $310 \, \text{m}^2$.


Work out the value of w.

$$w =$$
.....[4]

6 (a) Complete the table of values for $y = \frac{x^3}{3} - \frac{1}{2x^2}$, $x \ne 0$.

x	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
y	-9.1	-2.8	-0.8		-5.6	-5.5	-2.0			8.9

(b) On the grid, draw the graph of $y = \frac{x^3}{3} - \frac{1}{2x^2}$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

[5]

[3]

(c)	(i)	By drawing a suitable tangent, find an estimate of the gradient of the curve at $x = -2$.
	(ii)	
		$y = \dots [2]$
(d)	Haa	
(d)		your graph to solve the equations. $\frac{x^3}{3} - \frac{1}{2x^2} = 0$
		$x = \dots [1]$
	(ii)	$\frac{x^3}{3} - \frac{1}{2x^2} + 4 = 0$
		$x = \dots $ or $x = \dots $ or $x = \dots $ [3]
(e)	The	equation $\frac{x^3}{3} - \frac{1}{2x^2} + 4 = 0$ can be written in the form $ax^n + bx^{n-3} - 3 = 0$.
	Find	I the value of a , the value of b and the value of n .
		a =
		<i>b</i> =
		$n = \dots [3]$

 $\mathbf{8} \qquad \qquad \mathbf{f}(x) = 8 - 3x$

 $g(x) = \frac{10}{x+1}, x \neq -1$

 $h(x) = 2^x$

(a) Find

(i) $hf\left(\frac{8}{3}\right)$,

.....[2]

(ii) gh(-2),

.....[2]

(iii) $g^{-1}(x)$,

 $g^{-1}(x) = \dots [3]$

(iv) $f^{-1}f(5)$.

.....[1]

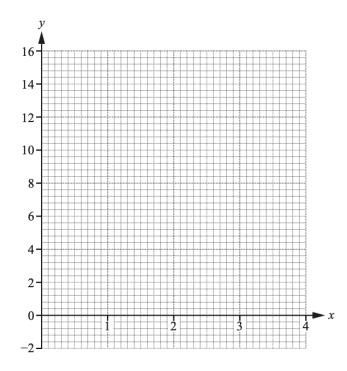
(b) Write f(x) + g(x) as a single fraction in its simplest form.

2 (a) (i)
$$y = 2^x$$

Complete the table.

x	0	1	2	3	4
y		2	4	8	

[2]

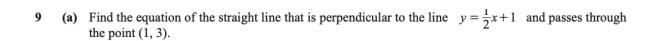

(ii)
$$y = 14 - x^2$$

Complete the table.

x	0	1	2	3	4
у		13	10	5	

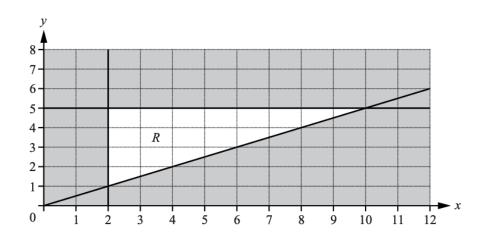
[2]

(b) On the grid, draw the graphs of $y = 2^x$ and $y = 14 - x^2$ for $0 \le x \le 4$.


[6]

(c)	Use	your graphs to solve the equations.		
	(i)	$2^x = 12$		
			x =	[1]
	(ii)	$2^x = 14 - x^2$		
			x =	[1]
(d)	(i)	On the grid, draw the line from the point (4, 2) that has a g	gradient of -4.	[1]
	(ii)	Complete the statement.		
		This straight line is a to the graph o	$f y = 14 - x^2$	
		at the point ().		[2]

(a)	There are 18	l match, the price of 3500 adults and 24 nount paid for the t	00 children atter	nding the football	e of a child ticket is $(x-2.50)$. match.
	Find the prior	ce of an adult ticke	t.		
(b)	(i) Factori	se $y^2 + 5y - 84$.			\$[4]
	(ii)			1	[2]
	The are	(y + 5) ea of the rectangle		y cm	SCALE
		e perimeter.	is 64 cm .		
					am [2]
					cm [3]


(c)	One •	shop, the price of a monthly magazine is m and the price of a weekly magazine is $(m-0.75)$ day, the shop receives \$168 from selling monthly magazines \$207 from selling weekly magazines. total number of these magazines sold during this day is 100.	
	(i)	Show that $50m^2 - 225m + 63 = 0$.	
	(ii)		[3]
	()	Show all your working.	

\$[3]

.....[3]

(b)

(i) Find the three inequalities that define the region R.

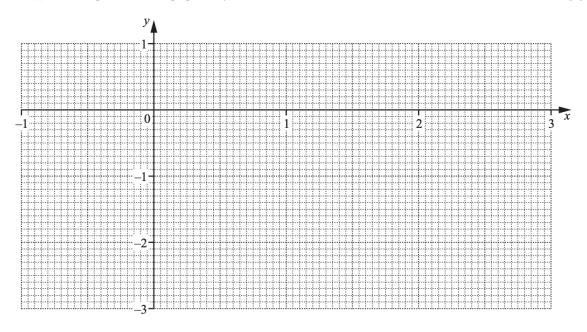
••••	•••••	•••••	•••••	
••••				
				Γ4 ⁻

(ii) Find the point (x, y), with integer co-ordinates, inside the region R such that 3x + 5y = 35.

(......) [2]

10		$f(x) = 2x - 3 \qquad g(x) = x^2$	+1	
	(i) (ii)	Find $g(x+2)$, giving your answer	in its simplest form.	[2]
	(iii)	Find x when $f(x) = 7$.		[2]
	(iv)	Find $f^{-1}(x)$.	x =	[2]

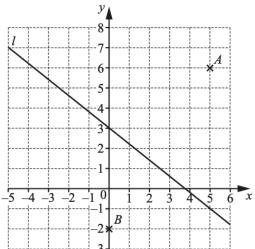
 $f^{-1}(x) = \dots [2]$


	$h(x) = x^x, x > 0$	
i)	Calculate h(0.3). Give your answer correct to 2 decimal places.	
i)	Find x when $h(x) = 256$.	[2]
		i) Calculate h(0.3). Give your answer correct to 2 decimal places.

x =.....[1]

3 The table shows some values of $y = x^3 - 3x^2 + x$.

x	-0.75	-0.5	-0.25	0	0.5	1	1.5	2	2.5	2.75
y	-2.9	-1.4	-0.5		-0.1	-1	-1.9		-0.6	


(b) On the grid, draw the graph of
$$y = x^3 - 3x^2 + x$$
 for $-0.75 \le x \le 2.75$. [4]

(c) Use your graph to complete the inequalities in x for which y > -1.

$$x < x < x < x < x >$$
 and $x >$ [3]

(d)	The	equation $x^3 - 3x^2 + 2x - 1 = 0$ can be solved by drawing a straight line on the grid.
	(i)	Write down the equation of this line.
		[2]
	(ii)	On the grid, draw this line and use it to solve the equation $x^3 - 3x^2 + 2x - 1 = 0$.
		x = [3]
(e)		drawing a suitable tangent, find an estimate for the gradient of the graph of $y = x^3 - 3x^2 + x$ = -0.25.
		[3]

(a)	Writ	te down the co-ordinates of A .	() [1]
(b)	Find	If the equation of line l in the form $y = mx + c$.	
(c)	Writ	te down the equation of the line parallel to line l that passes	$y = \dots$ [3] through the point B .
(d)	C is	the point (8, 14).	[2]
(-)	(i)	Write down the equation of the line perpendicular to line l	that passes through the point C .
	(ii)	Calculate the length of AC .	[3]
	(iii)	Find the co-ordinates of the mid-point of BC .	[3]

(.....) [2]

Pau	lo pa	ad Jim each buy sacks of rice but from different shops. ays \$72 for sacks costing m each. as \$72 for sacks costing m each.	
(a)	(i)	Find an expression, in terms of m , for the number of sacks Pa	aulo buys[1]
	(ii)	Find an expression, in terms of m , for the number of sacks Jin	
(b)	Pau	alo buys 4 more sacks than Jim.	
	Wri	ite down an equation, in terms of m , and show that it simplifies	s to $10m^2 + 9m - 162 = 0$.
			[4]
(c)	(i)	Solve $10m^2 + 9m - 162 = 0$.	
	(ii)	m = Find the number of sacks of rice that Paulo buys.	or <i>m</i> =[3]
			[1]
	(ii)		

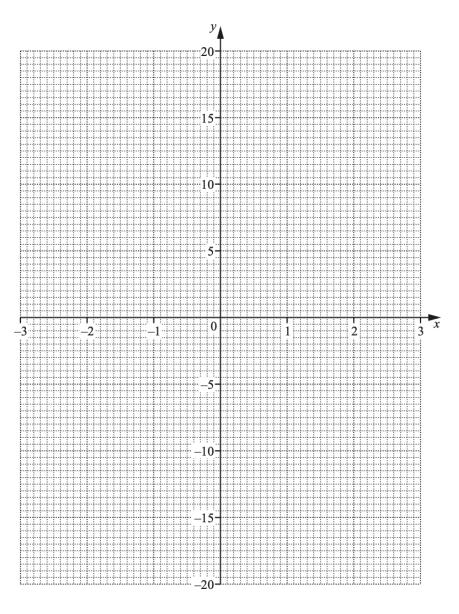
(a)	Factorise	$5m^2-20p^4.$			
					[3]
(b)	Make P th	e subject of the formula	$A = P + \frac{1}{2}$	<u>PRT</u>	
				100	
					P =[3]
			(a) Factorise $5m^2 - 20p^4$. (b) Make P the subject of the formula		(a) Factorise $5m^2 - 20p^4$. (b) Make P the subject of the formula $A = P + \frac{PRT}{100}$.

(b) Factorise $12ab^3 + 18a^3b^2$.	x =[3]
(c) Simplify.	[2]
(i) $5a^3c^2 \times 2a^2c^7$	[2]
(ii) $\left(\frac{16a^8}{c^{12}}\right)^{\frac{3}{4}}$	
(d) y is inversely proportional to the square of $(x + 2)$. When $x = 3$, $y = 2$.	[2]
Find y when $x = 8$.	
	y =[3]

2 (a) Solve 30 + 2x = 3(3 - 4x).

(e)	Write as a single fraction in its simplest form.
	$\frac{5}{x-2} - \frac{x-5}{2}$

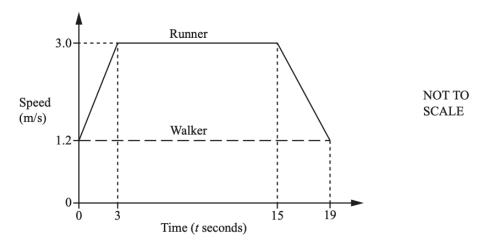
.....[3]


5 The table shows some values of $y = x^3 - 3x - 1$.

	-3									
у	-19	-9.1	0.1	1	-1	-3	-2.1	1	7.1	

(a) Complete the table of values.

[2]


(b) Draw the graph of $y = x^3 - 3x - 1$ for $-3 \le x \le 3$.

[4]

(c)	A st	raight line through $(0, -17)$ is a tangent to the graph of $y = x^3 - 3x - 1$.
	(i)	On the grid, draw this tangent.
	(ii)	Find the co-ordinates of the point where the tangent meets your graph.
	(iii)	(
(d)	Ву	y =
		$x = \dots \text{ or } x = \dots \text{ or } x = \dots $ [4]

6 The diagram shows the speed–time graph for part of a journey for two people, a runner and a walker.

(a) Calculate the acceleration of the runner for the first 3 seconds.

m/s ²	[1]
------------------	-----

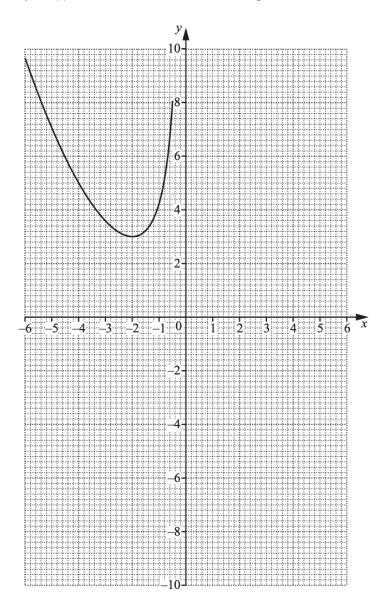
(b) Calculate the total distance travelled by the runner in the 19 seconds.

	m [3]
--	-------

(c) The runner and the walker are travelling in the same direction along the same path. When t = 0, the runner is 10 metres behind the walker.

Find how far the runner is ahead of the walker when t = 19.

m [3]


4 $f(x) = \frac{x^2}{4} - \frac{4}{x}, x \neq 0$

(a) Complete the table for f(x).

x	0.5	1	2	3	4	5	6
f(x)	-7.9	-3.8		0.9		5.5	8.3

[2]

(b) The graph of y = f(x) for $-6 \le x \le -0.5$ is drawn on the grid.

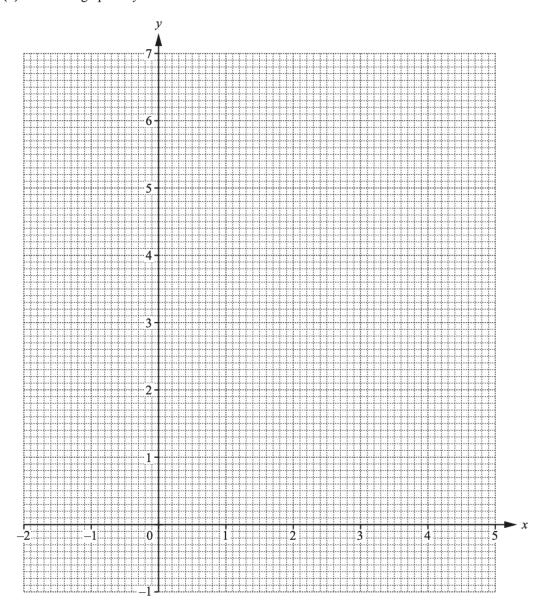
On the same grid, draw the graph of y = f(x) for $0.5 \le x \le 6$.

[3]

(c)	By drawin	ng a suitab	le tangent	t, estimate	the gradi	ent	of the gra	ph of y =	f(x) at the	e point (–	4, 5).
								•••••		•••••	[3]
(d)	g(x) =	$\frac{9}{x}$, $x \neq 0$									
	Complete	the table	for $g(x)$.								
	x	-4	-3	-2	-1		1	2	3	4	
	g(x)	-2.3		-4.5	<u>–9</u>		9	4.5		2.3	
											[1]
(e)	On the sar	me grid, d	raw the gr	raph of y	= g(x) for	r –	$4 \le x \le -$	-1 and 1	$\leq x \leq 4$.		[4]
(f)	(i) Use	your grapl	hs to find	the value	of x when	f(x	g(x) = g(x).				
								<i>x</i> =		•••••	[1]
	(ii) Writ	e down an	inequalit	y to show	the positi	ive v	values of a	for which	h f(x) > g	g(x).	
								•••••		•••••	[1]
(g)	The exact	answer to	part (f)(i	i) is $\sqrt[3]{k}$.							
	Use algeb	ra to find	the value	of <i>k</i> .							
								k =			[2]
								<i></i>	•••••	•••••	[2]

9	f(x) = 3x + 4	g(x) = 2x - 1	$h(x) = 3^x$
(a)	Find $g\left(\frac{1}{2}\right)$.		
(b)	Find fh(-1).		[1]
(c)	Find $g^{-1}(x)$.		[2]
(d)	Find $ff(x)$ in its simples	t form.	$g^{-1}(x) = \dots [2]$
(e)	Find $(f(x))^2$ in the form	$ax^2 + bx + c$.	[2]
(f)	Find x when $h^{-1}(x) = x$	g(2).	[2]

x =.....[2]


3 The table shows some values for $y = 1.5^x - 1$.

х	-2	-1	0	1	2	3	4	5
y	-0.56	-0.33				2.38	4.06	6.59

(a) Complete the table.

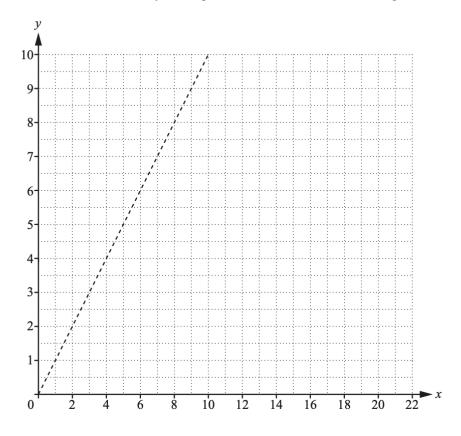
[3]

(b) Draw the graph of $y = 1.5^x - 1$ for $-2 \le x \le 5$.

[4]

(c)	Use	your graph to solve the equation $1.5^x - 1 = 3.5$.
(d)	Ву	$x = \dots$ [2] drawing a suitable straight line, solve the equation $1.5^x - x - 2 = 0$.
		$x = \dots $ or $x = \dots $ [3
(e)	(i)	On the grid, plot the point A at $(5, 5)$.
	(ii)	Draw the tangent to the graph of $y = 1.5^x - 1$ that passes through the point A. [1]
	(iii)	Work out the gradient of this tangent.
		[2

5 (a) (i) Factorise $3x^2 + 11x - 4$.


(ii) Solve the equation $3x^2 + 11x - 4 = 0$.

(b) (i) Show that $\frac{2}{2x+11} - \frac{1}{x-4} = \frac{1}{2}$ simplifies to $2x^2 + 3x - 6 = 0$.

(ii) Solve the equation $2x^2 + 3x - 6 = 0$. You must show all your working and give your answers correct to 2 decimal places.

F	łe v	hie buys x packets of seeds and y plants for his garden. wants to buy more packets of seeds than plants. inequality $x > y$ shows this information.	
I	Ie a	 less than 10 packets of seeds at least 2 plants. 	
(a)	Write down two more inequalities in x or y to show this information.	
			[2]
(b)	Each packet of seeds costs \$1 and each plant costs \$3. The maximum amount Bernie can spend is \$21.	
		Write down another inequality in x and y to show this information.	
			[1]

(c) The line x = y is drawn on the grid. Draw three more lines to show your inequalities and shade the **unwanted** regions.

(d) Bernie buys 8 packets of seeds.

i)		maximum			

.....[1]

[5]

(ii) Find the total cost of these packets of seeds and plants.

\$.....[1]

11 On Monday, Ankuri sent this text message to two friends.

Today is Day Number 1.

Tomorrow, please add 1 to the Day Number and send this text message to two friends.

All the friends who receive a text message follow the instructions.

(a) Complete the table.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Day Number	1	2	3				
Number of text messages sent today	2	4					

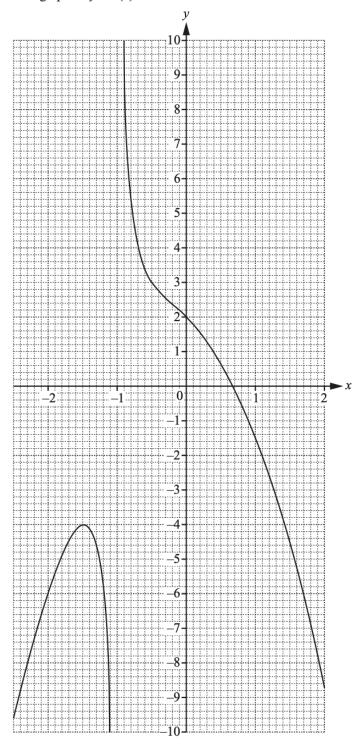
[4]

1	h)	Write down an	evareccion f	for the number	of text	meccages s	ent on Da	v Number n
ı	D)	write down an	expression i	or the number	or text	messages s	ent on Da	y Number n

 17
 11

- (c) Ankuri thinks that, by the end of Day Number 3, the **total** number of text messages that have been sent is $2^4 2$.
 - (i) Show that she is correct.

[2]


(ii) Complete the statement.

The **total** number of text messages sent by the end of Day Number 5 is which is

equal to
$$2^k - 2$$
 where $k =$ [2]

(iii)	Write down an expression for the total number of text messages sent by the end of Day Number n .
	[1]
(iv)	Find the Day Number when the total number of text messages sent by the end of the day is 1022.
	[1]

4 The diagram shows the graph of y = f(x) for $-2.5 \le x \le 2$.

(a)	Find f(1).
(b)	Solve $f(x) = 3$.
	$x = \dots [1]$
(c)	The equation $f(x) = k$ has only one solution for $-2.5 \le x \le 2$.
	Write down the range of values of k for which this is possible.
(d)	By drawing a suitable straight line, solve the equation $f(x) = x - 5$. $x = \dots \qquad \text{or } x = \dots \qquad \text{or } x = \dots \qquad [3]$
(e)	Draw a tangent to the graph of $y = f(x)$ at the point where $x = 1$.
	Use your tangent to estimate the gradient of $y = f(x)$ when $x = 1$.
	[3]

6	(a)	Exp	pand the brackets and simplify.	
		(i)	4(2x+5)-5(3x-7)	
		(**)	(v. 7) ²	[2]
		(11)	$(x-7)^2$	[2]
	(b)	Solv	lve.	
		(i)	$\frac{2x}{3} + 5 = -7$	
				<i>x</i> =[3]
		(ii)	4x + 9 = 3(2x - 7)	
				<i>x</i> =[3]

(iii) $3x^2 - 1 = 74$

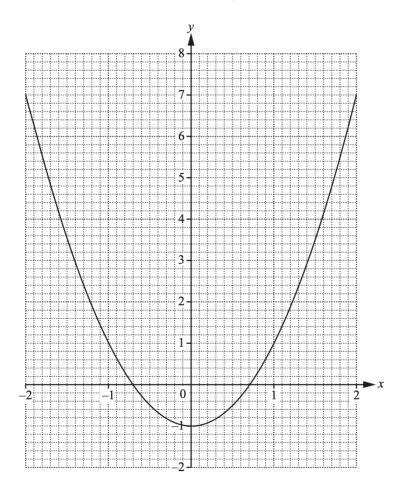
A lin	the joins the points $A(-3, 8)$ and $B(2, -2)$.	
(a)	Find the co-ordinates of the midpoint of AB .	
	() [2]
	Find the equation of the line through A and B. Give your answer in the form $y = mx + c$.	
		<i>y</i> =[3]
(c)	Another line is parallel to AB and passes through the point $(0, 7)$.	
	Write down the equation of this line.	
		[2]
	Find the equation of the line perpendicular to AB which passes throughout give your answer in the form $ax + by + c = 0$ where a , b and c are in	
		[A]
		[4]

(b) Town A has a rectangular park.

The length of the park is x m.

The width of the park is 25 m shorter than the length.

The area of the park is $2200 \,\mathrm{m}^2$.


(i) Show that $x^2 - 25x - 2200 = 0$.

[1]

(ii) Solve $x^2 - 25x - 2200 = 0$. Show all your working and give your answers correct to 2 decimal places.

4 $f(x) = 2x^2 - 1$

The graph of y = f(x), for $-2 \le x \le 2$, is drawn on the grid.

(a) Use the graph to solve the equation f(x) = 5.

(b) (i) Draw the tangent to the graph of y = f(x) at the point (-1.5, 3.5). [1]

(ii) Use your tangent to estimate the gradient of y = f(x) when x = -1.5.

.....[2]

(c)	g(x)	$= 2^{x}$
(~)	5(7)	_

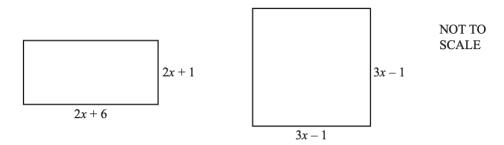
(i) Complete the table for y = g(x).

x	-2	-1	0	1	2
у	0.25	0.5		2	4

[1]

(ii)	On the grid opposite, dra	w the graph of $y = g(x)$ for -2	$2 \le x \le 2$.	3
(/	on the British opposite, and	8 9 9 (1) 101 -		Ξ.

- (d) Use your graphs to solve
 - (i) the equation f(x) = g(x),


(ii) the inequality f(x) < g(x).

(e) (i) Write down the three values.

$$g(-3) = \dots \qquad g(-5) = \dots \qquad g(-10) = \dots \qquad [1]$$

(ii) Complete the statement.

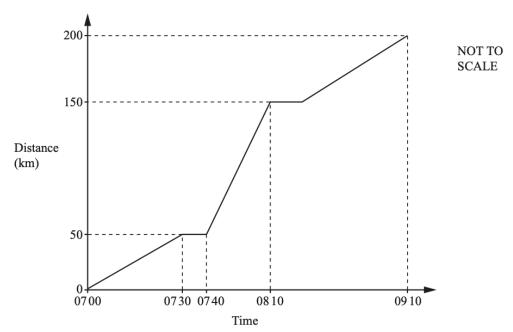
7 (a) In this part, all lengths are in centimetres.

(i) Find the value of x when the perimeter of the rectangle is equal to the perimeter of the square.

x =	 [3]

(ii) Find the value of x when the area of the rectangle is equal to the area of the square. Show all your working.

$$x =$$
 [7]


(b) (i) Factorise $x^2 + 4x - 5$.

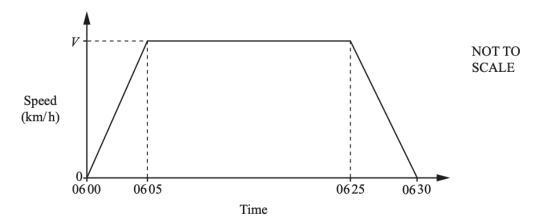
.....[2]

(ii) Solve the equation $\frac{5}{x} - \frac{8}{x+1} = 1$. Show all your working.

$$x = \dots$$
 or $x = \dots$ [4]

9 (a)

The distance-time graph shows the journey of a train.


(i) Find the speed of the train between 07 00 and 07 30.

..... km/h [1]

(ii) Find the average speed for the whole journey.

..... km/h [3]

(b)

The speed-time graph shows the first 30 minutes of another train journey. The distance travelled is $100\,\mathrm{km}$.

The maximum speed of the train is V km/h.

(i) Find the value of V.

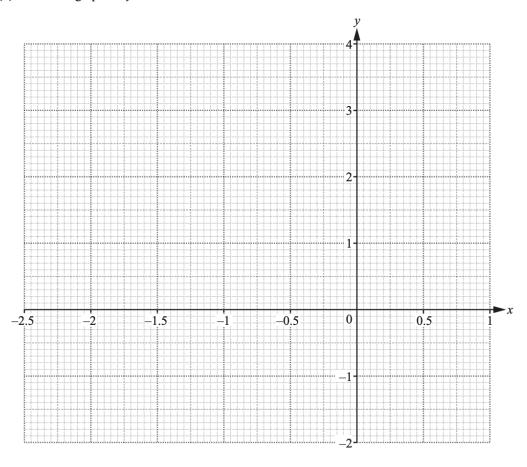
V =		[3]	
-----	--	----	---	--

(ii) Find the acceleration of the train during the first 5 minutes. Give your answer in m/s^2 .

	m/s^2	[2]
•••••	111/5	

10	f(x) = 3x - 2	$g(x) = x^2$	$h(x) = 3^x$	
	Find $f(-3)$.	g(x) - x	$\Pi(x) = 3$	
(b)	Find the value of x whe	en f(x) = 19.		[1]
(c)	Find fh(2).			<i>x</i> =[2]
(d)	Find $gf(x) + f(x) + x$. Give your answer in its	simplest form.		[2]
	Find 6-1(c)			[3]
(e)	Find $f^{-1}(x)$.			

 $f^{-1}(x) = \dots [2]$


3 The table shows some values for $y = 2x^3 + 4x^2$.

x	-2.2	-2	-1.5	-1	-0.5	0	0.5	0.8
У	-1.94				0.75	0		3.58

(a) Complete the table.

[4]

(b) Draw the graph of $y = 2x^3 + 4x^2$ for $-2.2 \le x \le 0.8$.

[4]

(c) Find the number of solutions to the equation $2x^3 + 4x^2 = 3$.

.....[1]

(d)	(i)	The equation $2x^3 + 4x^2 - x = 1$ can be solved by drawing a straight line on the grid.
		Write down the equation of this straight line.
	(ii)	$y = \dots $ [1] Use your graph to solve the equation $2x^3 + 4x^2 - x = 1$.
(e)	The	x =
	Cor	nplete the inequality for k .
		< k <[2]

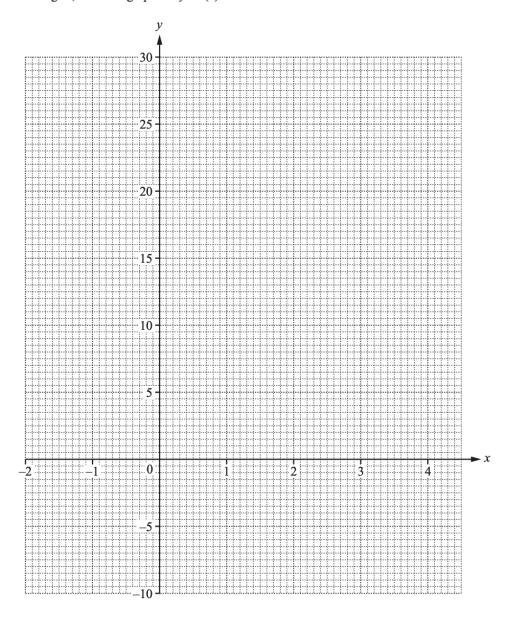
Solve the simultaneous equations. You must show all your working.	2x+3y = 11 $3x-5y = -50$	
$x^{2} - 12x + a = (x + b)^{2}$ Find the value of a and the value of b.		<i>x</i> =
		a =
	$x^2 - 12x + a = (x+b)^2$ Find the value of a and the value of b	You must show all your working. $2x + 3y = 11$ $3x - 5y = -50$

3	(a)	Solve.	
			11x + 15 = 3x - 7

11x + 15 = 3x - 7	
(b) (i) Factorise. $x^2 + 9x - 22$	<i>x</i> =[2]
(ii) Solve. $x^2 + 9x - 22 = 0$	[2]
(c) Rearrange $y = \frac{2(x-a)}{x}$ to make x the subject.	x =

				<i>x</i> =	 	[4]
(d)	Simplify.	$\frac{x^2 - 6x}{x^2 - 36}$				

.....[3]


 $f(x) = x^3 - 4x^2 + 15$

(a) Complete the table of values for y = f(x).

x	-2	-1	-0.5	0	1	2	2.5	3	3.5	4	4.5
У	-9		13.9	15	12		5.6	6	8.9	15	25.1

[2]

(b) On the grid, draw the graph of y = f(x) for $-2 \le x \le 4.5$.

[4]

(c)	Use your graph to solve the equation $f(x) = 0$.
(d)	x =
(e)	[3] By drawing a suitable straight line on the grid, solve the equation $x^3 - 4x^2 - 2x + 5 = 0$.
	$x = \dots $ or $x = \dots $ or $x = \dots $ [4]

(a) Find f(5).

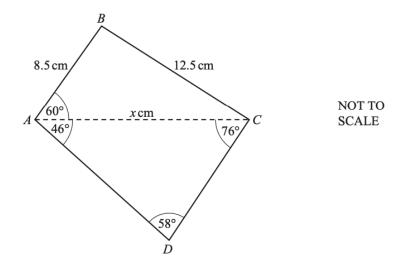
.....[1]

(b) Find gh(3).

.....[2]

(c) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots [2]$


(d) Show that $hf(x) = \frac{64}{16^x}$.

[3]

(e) Find the value of x when h(x) = g(0.5).

x =.....[2]

10

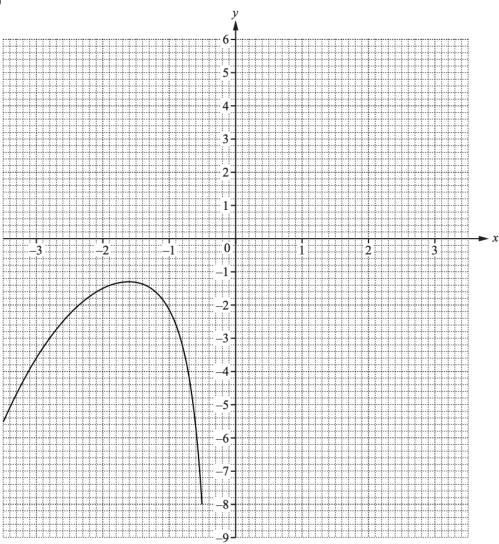
The diagram shows a quadrilateral ABCD.

(a) The length of AC is x cm.

Use the cosine rule in triangle ABC to show that $2x^2 - 17x - 168 = 0$.

[4]

(b) Solve the equation $2x^2 - 17x - 168 = 0$. Show all your working and give your answers correct to 2 decimal places.


5
$$y = \frac{x^3}{8} - \frac{2}{x^2}, x \neq 0$$

(a) Complete the table of values.

x	0.5	1	1.5	2	2.5	3	3.5
у	-8.0	-1.9	-0.5	0.5	1.6		

[2]

(b)

The graph of
$$y = \frac{x^3}{8} - \frac{2}{x^2}$$
 for $-3.5 \le x \le -0.5$ has already been drawn.
On the grid, draw the graph of $y = \frac{x^3}{8} - \frac{2}{x^2}$ for $0.5 \le x \le 3.5$.

(c)	Use your graph to solve the equation	$\frac{x^3}{8}$	$\frac{2}{x^2} = 0.$	

$$x = \dots [1]$$

(d)
$$\frac{x^3}{8} - \frac{2}{x^2} = k$$
 and k is an integer.

Write down a value of k when the equation $\frac{x^3}{8} - \frac{2}{x^2} = k$ has

(i) one answer,

$$k = \dots [1]$$

(ii) three answers.

$$k = \dots [1]$$

(e) By drawing a suitable tangent, estimate the gradient of the curve where x = -3.

.....[3]

(f) (i) By drawing a suitable line on the grid, find x when $\frac{x^3}{8} - \frac{2}{x^2} = 6 - x$.

$$x =$$
.....[3]

(ii) The equation $\frac{x^3}{8} - \frac{2}{x^2} = 6 - x$ can be written as $x^5 + ax^3 + bx^2 + c = 0$. Find the values of a, b and c.

a =

b =

 $c = \dots [4]$

8	(a)	The	e cost of 1 apple is a cents. e cost of 1 pear is p cents. e total cost of 7 apples and 9 pears is 354 cents.	
		(i)	Write down an equation in terms of a and p .	
				[1]
		(ii)	The cost of 1 pear is 2 cents more than the cost of 1 apple.	
			Find the value of a and the value of p .	
			а	=
			p	=[3]
	(b)	Rov	wena walks 2 km at an average speed of x km/h.	
		(i)	Write down an expression, in terms of x , for the time taken.	
				h [1]
		(ii)	Rowena then walks 3 km at an average speed of $(x - 1)$ km/h. The total time taken to walk the 5 km is 2 hours.	
			(a) Show that $2x^2 - 7x + 2 = 0$.	

[3]

(b)	Find the value of x . Show all your working and give your answer correct to 2 decimal places.
	<i>x</i> =[4]

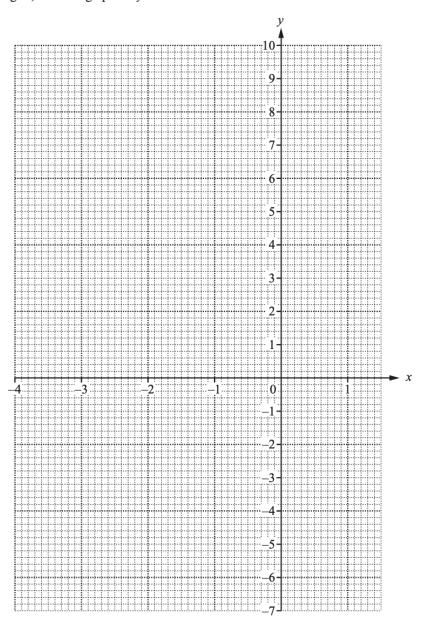
9	f(x) = 1 - 2x	g(x) = x + 4	$h(x) = x^2 + 1$	
(a)	Find $f(-1)$.			
(b)	Solve the equation.	2f(x) = g(x)		[1]
(c)	Find $fg(x)$. Give your answer in	n its simplest form.		<i>x</i> =[2]
(d)	Find hh(2).			[2]
(e)	Find $f^{-1}(x)$.			[2]
				$f^{-1}(x) = \dots [2]$

 $\mathbf{(f)} \qquad \qquad \mathrm{hgf}(x) = 4x^2 + px + q$

Find the value of p and the value of q.

$$p = \dots$$
 $q = \dots$ [4]

(a) Solve. $\frac{x}{7} = 49$	
 (b) Simplify. (i) x⁰ 	<i>x</i> =[1]
(ii) $x^7 \times x^3$	[1]
(iii) $\frac{(3x^6)^2}{x^{-4}}$	[1]
(c) (i) Factorise completely. $2x^2 - 18$	[2]
(ii) Simplify. $\frac{2x^2 - 18}{x^2 + 7x - 30}$	[2]
	[3]


7 The table shows some values of $y = 2x^2 + 5x - 3$ for $-4 \le x \le 1.5$.

x	-4	-3	-2	-1	0	1	1.5
y		0	-5		-3	4	

(a) Complete the table.

[3]

(b) On the grid, draw the graph of $y = 2x^2 + 5x - 3$ for $-4 \le x \le 1.5$.

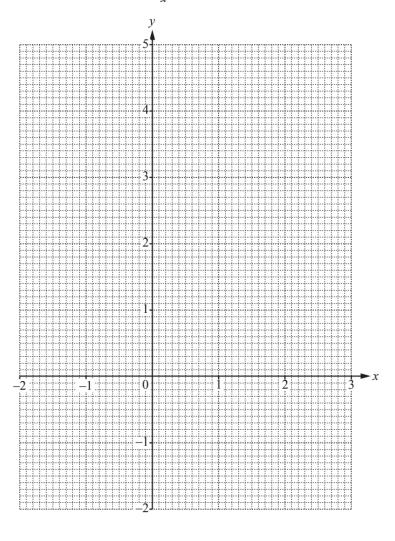
[4]

(d)	$y = 2x^2 + 5x - 3$ can be written in the form $y = 2(x + a)^2 + b$	$x = \dots $ or $x = \dots $ [2]
	Find the value of a and the value of b .	
		a =
		<i>b</i> =[3]

(c) Use your graph to solve the equation $2x^2 + 5x - 3 = 3$.

	e B has equation $3x + 2y = 18$.	
(a)	Find the gradient of	
	(i) line A ,	
		[1]
	(ii) line <i>B</i> .	
		[1]
(b)	Write down the co-ordinates of the point where line A crosses the	x-axis.
		() [2]
(c)	Find the equation of the line perpendicular to line A which passes Give your answer in the form $y = mx + c$.	through the point (10, 9).
	Give your answer in the form $y = mx + c$.	
	<i>y</i> :	=[4]
(d)	Work out the co-ordinates of the point of intersection of line A and	d line B.
		() [3]
(e)	Work out the area enclosed by line A , line B and the y -axis.	
		[3]
		[3]

Lui	gi's a	d Alfredo run in a 10km race. verage speed was $x \text{km/h}$. s average speed was 0.5km/h slower than Luigi's average speed.
(a)	Lui	gi took $\frac{10}{x}$ hours to run the race.
	Wri	te down an expression, in terms of x , for the time that Alfredo took to run the race.
		h [1]
(b)	Alfr	redo took 0.25 hours longer than Luigi to run the race.
	(i)	Show that $2x^2 - x - 40 = 0$.
		[4]
	(ii)	Use the quadratic formula to solve $2x^2 - x - 40 = 0$.
		Show all your working and give your answers correct to 2 decimal places.
		$x = \dots $ or $x = \dots $ [4]
	(iii)	Work out the time that Luigi took to run the 10 km race. Give your answer in hours and minutes, correct to the nearest minute.
		office your answer in nours and minutes, correct to the hearest minute.
		h min [3]


7 The table shows some values of $y = x + \frac{1}{x^2}$, $x \neq 0$.

x	-2	-1.5	-1	-0.75	-0.5	0.5	0.75	1	1.5	2	3
y	-1.75	-1.06	0	1.03		4.50	2.53	2		2.25	

(a) Complete the table of values.

[3]

(b) On the grid, draw the graph of $y = x + \frac{1}{x^2}$ for $-2 \le x \le -0.5$ and $0.5 \le x \le 3$.

[5]

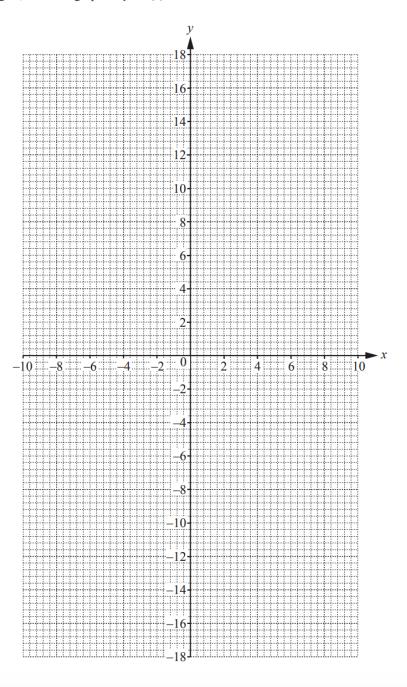
(c)	Use your graph to solve the equation $x + \frac{1}{x^2} = 1.5$.
(d)	The line $y = ax + b$ can be drawn on the grid to solve the equation $\frac{1}{x^2} = 2.5 - 2x$. (i) Find the value of a and the value of b .
	$a = \dots$ $b = \dots$ [2] (ii) Draw the line $y = ax + b$ to solve the equation $\frac{1}{x^2} = 2.5 - 2x$.
(e)	$x = \dots$ [3] By drawing a suitable tangent, find an estimate of the gradient of the curve at the point where $x = 2$.
	[3

8	(a)	y is directly proportional to the positive square root of $(x + 2)$. When $x = 7$, $y = 9$.		
		Find y when $x = 23$.		
	(b)	Simplify.	<i>y</i> =[3	;]
	(0)	$\frac{x^2 + 12x + 36}{x^2 + 4x - 12}$		
			[5	5]

(c)	$W = \sqrt{\frac{X - a}{a}}$ Make <i>a</i> the subject of the formula.	
		<i>a</i> =[5]
(d)	Write as a single fraction in its simplest form. $\frac{x-2}{x+1} - \frac{x}{x}$	+3 -1

.....[5]

11		f(x) = 2 - 3x	g(x) = 7x + 3			
(a)	Fine	i				
	(i)	f(-3),				
	(ii)	g(2x).			 	. [1]
(b)	Fino	f(x) in its simplest for	m.		 	. [1]
(c)	Fin	dx when 3f(x) = 7.			 	. [2]
(d)	Solv	We the equation. $f(x + 4)$	$\frac{1}{2} - g(x) = 0$	<i>x</i> =		. [3]
				<i>x</i> =	 	. [3]


5
$$f(x) = \frac{20}{x} + x, \quad x \neq 0$$

(a) Complete the table.

x	-10	-8	-5	-2	-1.6	1.6	2	5	8	10
f(x)	-12	-10.5	-9	-12	-14.1	14.1	12			12

[2]

(b) On the grid, draw the graph of y = f(x) for $-10 \le x \le -1.6$ and $1.6 \le x \le 10$.

[5]

(c) Using your graph, solve the equation f(x) = 11.

 $x = \dots$ or $x = \dots$ [2]

(d) k is a prime number and f(x) = k has no solutions.

Find the possible values of k.

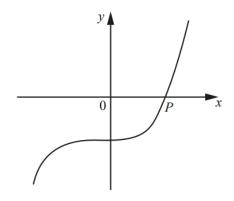
.....[2]

(e) The gradient of the graph of y = f(x) at the point (2, 12) is -4.

Write down the co-ordinates of the other point on the graph of y = f(x) where the gradient is -4.

(.....)[1]

(f) (i) The equation $f(x) = x^2$ can be written as $x^3 + px^2 + q = 0$.

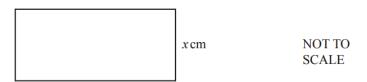

Show that p = -1 and q = -20.

[2]

- (ii) On the grid opposite, draw the graph of $y = x^2$ for $-4 \le x \le 4$. [2]
- (iii) Using your graphs, solve the equation $x^3 x^2 20 = 0$.

 $x = \dots$ [1]

(iv)


NOT TO SCALE

The diagram shows a **sketch** of the graph of $y = x^3 - x^2 - 20$. *P* is the point (n, 0).

Write down the value of n.

n = [1]

6 (a)

The perimeter of the rectangle is $80 \,\mathrm{cm}$. The area of the rectangle is $A \,\mathrm{cm}^2$.

(i) Show that $x^2 - 40x + A = 0$.

[3]

(ii) When A = 300, solve, by factorising, the equation $x^2 - 40x + A = 0$.

x =.....or x =.....[3]

(iii) When A = 200, solve, by using the quadratic formula, the equation $x^2 - 40x + A = 0$. Show all your working and give your answers correct to 2 decimal places.

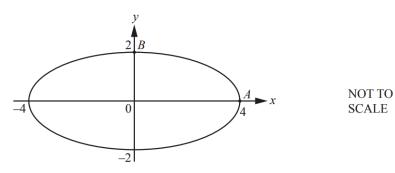
$$x =$$
......or $x =$[4]

(b)		ar completes a 200 km journey with an average speed of x km/h. car completes the return journey of 200 km with an average speed of $(x + 10)$ km/h.
	(i)	Show that the difference between the time taken for each of the two journeys is $\frac{2000}{x(x+10)}$ hours.
		[3]
	(ii)	Find the difference between the time taken for each of the two journeys when $x = 80$. Give your answer in minutes and seconds .
		min o [2]
		min s [3]

8 (a)	f(x) = 2x + 1 Solve the equation $f(x) = g(1)$.	$g(x) = x^2 + 4$	$h(x) = 2^x$
(b)	Find the value of fh(3).		<i>x</i> =[2]
(c)	Find $f^{-1}(x)$.		[2]
(d)	Find $gf(x)$ in its simplest form.		$f^{-1}(x) = \dots [2]$

.....[3]

(e) Solve the equation $h^{-1}(x) = 0.5$.


x =.....[1]

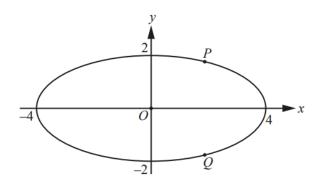
$$(f) \qquad \frac{1}{h(x)} = 2^{kx}$$

Write down the value of k.

 $k = \dots [1]$

9

The diagram shows a curve with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.


- (a) A is the point (4, 0) and B is the point (0, 2).
 - (i) Find the equation of the straight line that passes through A and B. Give your answer in the form y = mx + c.

y =....[3]

(ii) Show that $a^2 = 16$ and $b^2 = 4$.

[2]

(b)

NOT TO SCALE

P(2, k) and Q(2, -k) are points on the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

(i) Find the value of k.

$$k = \dots [3]$$

(ii) Calculate angle POQ.

- (c) The area enclosed by a curve with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .
 - (i) Find the area enclosed by the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

Give your answer as a multiple of π .

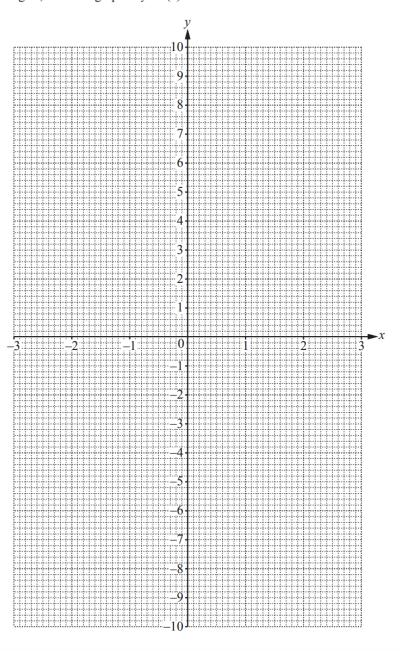
(ii) A curve, mathematically similar to the one in the diagrams, intersects the x-axis at (12, 0) and (-12, 0).

Work out the area enclosed by this curve, giving your answer as a multiple of π .

.....[2]

(i) $3^x = 243$	
(ii) $16^x = 4$	<i>x</i> =[1]
(iii) $8^x = 32$	<i>x</i> =[1]
(iv) $27^x = \frac{1}{9}$	<i>x</i> =[2]
(b) Solve by factorisation. $y^2 - 7y - 30 = 0$ Show your working.	<i>x</i> =[2]
	$y = \dots $ or $y = \dots $ [3]

(a) Work out the value of x in each of the following.


4
$$f(x) = x^2 - \frac{1}{x} - 4$$
, $x \neq 0$

(a) (i) Complete the table.

x	-3	-2	-1	-0.5	-0.1	0.2	0.5	1	2	3
f(x)	5.3	0.5		-1.8	6.0	-9.0	-5.8	-4		4.7

[2]

(ii) On the grid, draw the graph of y = f(x) for $-3 \le x \le -0.1$ and $0.2 \le x \le 3$.

[5]

(b)	Use	your graph to solve the equation $f(x) = 0$.	
(c)	Fino	$x = \dots$ If an integer k , for which $f(x) = k$ has one solution.	or $x =$ [3]
			k =[1]
(d)	(i)	By drawing a suitable straight line, solve the equation	f(x)+2=-5x.
	(ii)	$f(x) + 2 = -5x$ can be written as $x^3 + ax^2 + bx - 1 = 0$. Find the value of a and the value of b .	$x = \dots $ or $x = \dots $ [4]
			a = b =[2]

8	f(x) = 5x + 7	$g(x) = \frac{4}{x-3} , x \neq 3$	
(a) Fin	d		
(i)	fg(1),		
(ii)	gf(x),		[2]
(iii)	$g^{-1}(x)$,		[2]
(iv)	$f^{-1}f(2)$.		$g^{-1}(x) = \dots$ [3]

.....[1]

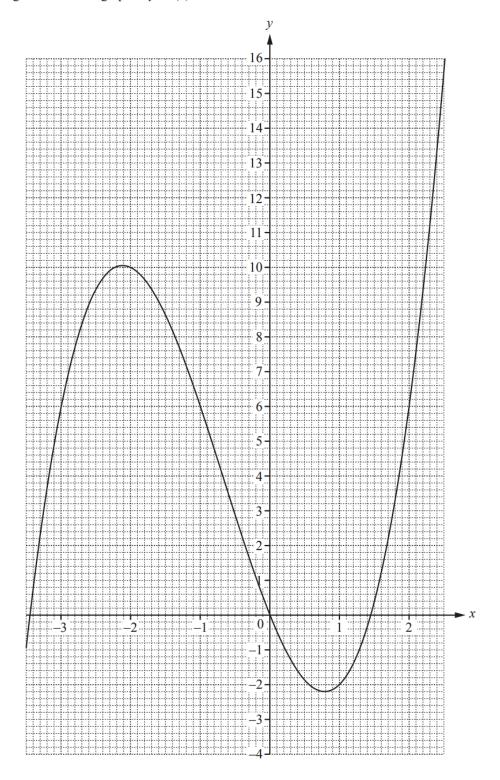
- **(b)** f(x) = g(x)
 - (i) Show that $5x^2 8x 25 = 0$.

[3]

(ii) Solve $5x^2 - 8x - 25 = 0$. Show all your working and give your answers correct to 2 decimal places.

x = or x = [4]

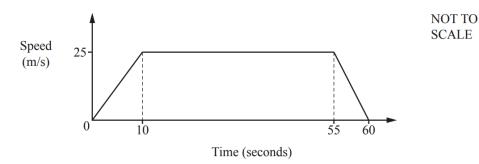
9	A lii	ne joins the points $A(-2, -5)$ and $B(4, 13)$.
	(a)	Calculate the length AB .
		$AB = \dots [3]$
	(b)	Find the equation of the line through A and B. Give your answer in the form $y = mx + c$.
		$y = \dots $ [3]
	(c)	Another line is parallel to AB and passes through the point $(0, -5)$.
		Write down the equation of this line.
		[2]
	(d)	Find the equation of the perpendicular bisector of AB .
		[5]


2	(a)	Solve the inequality.	5x - 3 > 9	
				[2]
	(b)	Factorise completely. (i) $xy - 18 + 3y - 6x$		
				[2]
		(ii) $8x^2 - 72y^2$		
				[2]

 $p+5 = \frac{1-2r}{r}$

(c) Make r the subject of the formula.

r =[4]


3 The diagram shows the graph of y = f(x) for $-3.5 \le x \le 2.5$.

(a)	(i)	Fi	nd f(-2).										
	(ii)	So	lve the e	quation f(f(x) = 2.					•••••	•••••		[1]
				1									
						<i>x</i> =		0	or $x = \dots$		or $x =$		[3]
	(iii)	Tw	o tangen	ts, each v	with grad	ient 0, ca	n be drav	vn to	the graph	of $y = f($	x).		
		Wı	rite down	the equa	tion of ea	ach tange	ent.						
										•••••	•••••		
						2							[2]
(b)	(i)	Co	mplete tl	ne table f	for $g(x) =$	$\frac{2}{x}$ + 3 for	r −3.5 ≤	<i>x</i> ≤−	-0.5 and	$0.5 \leqslant x \leqslant$	≤ 2.5 .		
	x		-3.5	-3	-2	-1	-0.5		0.5	1	2	2.5	
	g(x)		2.4	2.3		1			7	5		3.8	[2]
	(ii)	Or	the grid	opposite	draw th	e graph o	af v = a(x)						[3] [4]
	(iii)			aph to so									נדן
	(111)	O.S	e your gr	upii to so	ive the c	quation	(A) S (A)	•					
									r =		or r =		[2]
(c)	Find	gf	(-2).							•	01 %		[2]
(0)	1 1110	· 6-1	-).										
													[2]
(d)	Find	g ⁻¹	¹ (5).										
													[1]

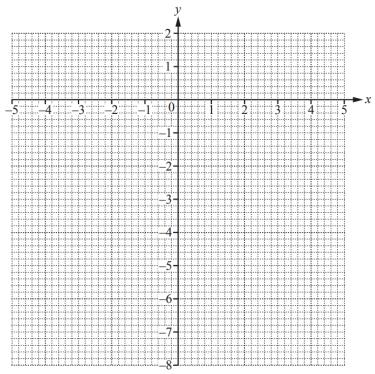
		runs 10 km at an average speed of x km/h. day he runs 12 km at an average speed of $(x - 1)$ km/h.
The	time	taken for the 10 km run is 30 minutes less than the time taken for the 12 km run.
(a)	(i)	Write down an equation in x and show that it simplifies to $x^2 - 5x - 20 = 0$.
		[4]
	(ii)	Use the quadratic formula to solve the equation $x^2 - 5x - 20 = 0$. Show your working and give your answers correct to 2 decimal places.
		Show your working and give your answers correct to 2 decimal places.
		$x = \dots $ or $x = \dots $ [4]
	(iii)	Find the time that Alfonso takes to complete the 12 km run. Give your answer in hours and minutes correct to the nearest minute.
		hours minutes [2]

(b) A cheetah runs for 60 seconds. The diagram shows the speed-time graph.

(i) Work out the acceleration of the cheetah during the first 10 seconds.

 $.....m/s^2\left[1\right]$

(ii) Calculate the distance travelled by the cheetah.


.....m [3]

4
$$y=1-\frac{2}{x^2}, x \neq 0$$

(a) Complete the table.

x	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
у		0.88	0.78			-7	-7			0.78	0.88	

(b) On the grid, draw the graph of $y = 1 - \frac{2}{x^2}$ for $-5 \le x \le -0.5$ and $0.5 \le x \le 5$.

[5]

[3]

- (c) (i) On the grid, draw the graph of y = -x 1 for $-3 \le x \le 5$. [2]
 - (ii) Solve the equation $1 \frac{2}{x^2} = -x 1$.

x = [1]

	(111)	The equation $1 - \frac{1}{x^2} = -x - 1$ can be written in the form.	$x^3 + px^2 + q = 0.$
		Find the value of p and the value of q .	
			<i>p</i> =
			<i>q</i> =[3]
(d)	The	graph of $y = 1 - \frac{2}{x^2}$ cuts the positive x-axis at A.	
	B is	the point $(0, -2)$.	
	(i)	Write down the co-ordinates of A .	
			()[1]
	(ii)	On the grid, draw the straight line that passes through A an	ad B . [1]
	(iii)	Complete the statement.	
		The straight line that passes through A and B is a	
		at the point	[2]

Dylan spends \$3.23 on apples and \$3.23 on oranges. The total of the number of apples and the number of	
(a) Write an equation in x and show that it simplifies	es to $18x^2 - 287x - 323 = 0$.
	[4]
(b) (i) Find the two prime factors of 323.	
	[1]
(ii) Complete the statement.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$18x^2 - 287x - 323 = (18x \dots 18x^2 - 287x - 323 + 323$	
(iii) Solve the equation $18x^2 - 287x - 323 = 0$	·
	$x = \dots $ or $x = \dots $ [1]
(c) Find the largest number of apples Dylan can bu	
	[1]

Apples cost x cents each and oranges cost (x + 2) cents each.

9 (a)	f(x) = 2x + 1 Find $hf(2) - fh(1)$.	g(x) = 3x - 2	$h(x) = 3^x$
(b)	Find $gf(x)$, giving your answer in	its simplest form.	[3]
(c)	Solve the inequality $f(x) > g(x)$.		[2]
(d)	Solve the equation $h(x) = \frac{1}{9}$.		[2]

(e) Find $g^{-1}(x)$.

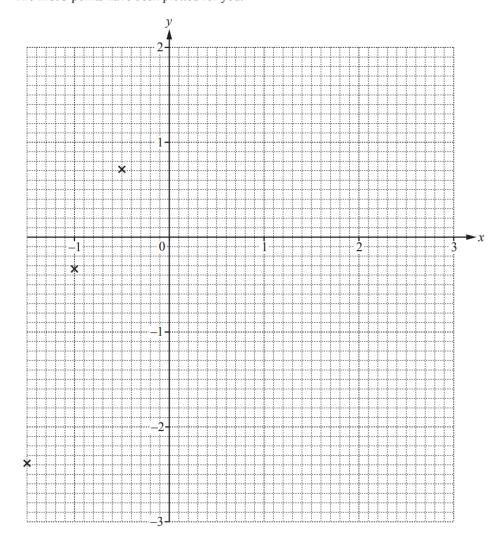
x =[1]

 $g^{-1}(x) = \dots [2]$

(f)	Find $\frac{5}{f(x)} + g(x)$.
	Give your answer as a single fraction.

[3]		
	F21	ı
	 . 3	

(g) Solve the equation $f^{-1}(x) = 4$.


$$x = \dots [1]$$

2 (a) Complete the table of values for $y = \frac{x^3}{3} - x^2 + 1$.

	x	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3	
	y	-2.38	-0.33	0.71		0.79	0.33	-0.13	-0.33	-0.04		
٠												[2]

(b) Draw the graph of $y = \frac{x^3}{3} - x^2 + 1$ for $-1.5 \le x \le 3$.

The first 3 points have been plotted for you.

[4]

(c)	Using your	graph,	solve	the	equations.
-----	------------	--------	-------	-----	------------

(i)
$$\frac{x^3}{3} - x^2 + 1 = 0$$

$$x = \dots$$
 or $x = \dots$ [3]

(ii)
$$\frac{x^3}{3} - x^2 + x + 1 = 0$$

$$x =$$
....[2]

- (d) Two tangents to the graph of $y = \frac{x^3}{3} x^2 + 1$ can be drawn parallel to the x-axis.
 - (i) Write down the equation of each of these tangents.

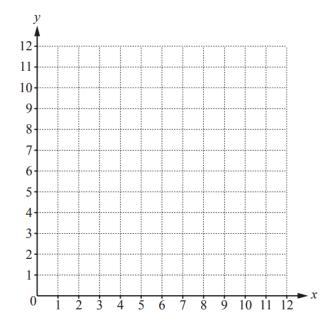
.....

(ii) For $0 \le x \le 3$, write down the smallest possible value of y.

(b) A bag of sweets contains *x* orange sweets and *y* lemon sweets. Each orange sweet costs 2 cents and each lemon sweet costs 3 cents.

The cost of a bag of sweets is less than 24 cents.

There are at least 9 sweets in each bag.


There are at least 2 lemon sweets in each bag.

(i) One of the inequalities that shows this information is 2x + 3y < 24.

Write down the other two inequalities.

(ii) On the grid, by shading the unwanted regions, show the region which satisfies the three inequalities.

[4]

(iii) Find the lowest cost of a bag of sweets.
Write down the value of x and the value of y that give this cost.

Lowest cost = cents

x =

y = [3]

7	(a)	\$1 =	3 67	dirhams
/	a)	$\mathfrak{I} =$	3.0/	uirnams

Calculate the value, in dollars, of 200 dirhams. Give your answer correct to 2 decimal places.

\$	Г2	,
Ψ	L-	'

(b) (i) Write as a single fraction, in its simplest form.

$$\frac{1000}{x} - \frac{1000}{x+1}$$

.....[3]

(ii) One day in 2014, 1 euro was worth x rand. One year later, 1 euro was worth (x + 1) rand.

Winston changed 1000 rand into euros in both years. In 2014 he received 4.50 euros more than in 2015.

Write an equation in terms of x and show that it simplifies to

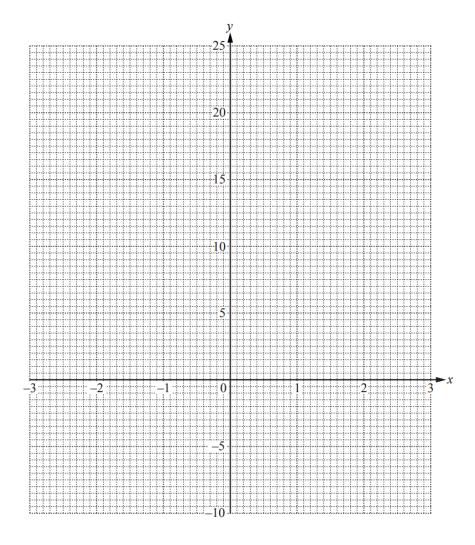
$$9x^2 + 9x - 2000 = 0.$$

(iii)	Use the quadratic formula to solve the equation $9x^2 + 9x - 2000 = 0$. Show all your working and give your answers correct to 2 decimal places.
	$x = \dots $ or $x = \dots $ [4]
(iv)	Calculate the number of euros Winston received in 2014. Give your answer correct to 2 decimal places.
(iv)	Calculate the number of euros Winston received in 2014.
(iv)	Calculate the number of euros Winston received in 2014.
(iv)	Calculate the number of euros Winston received in 2014. Give your answer correct to 2 decimal places.
(iv)	Calculate the number of euros Winston received in 2014. Give your answer correct to 2 decimal places.
(iv)	Calculate the number of euros Winston received in 2014. Give your answer correct to 2 decimal places.
(iv)	Calculate the number of euros Winston received in 2014. Give your answer correct to 2 decimal places.

9		$y = \frac{3}{x} + 2$, $x \ne 0$ Find the value of y when x	=-6.	
	(ii)	Find x in terms of y .		<i>y</i> =[1]
	(b) (i)	g(x) = 2 - x h(Find g(5).	$f(x) = 2^x$	<i>x</i> =[3]
	(ii)	Find hhh(2).		[1]

.....[2]

(iv)	Find <i>x</i> when $g^{-1}(x) = -1$.	<i>x</i> =[2]
		<i>x</i> =[1]


(iii) Find x when g(x) = h(3).

2 (a) Complete the table for $y = 3x + \frac{2}{x^2} + 1$, $x \ne 0$.

)	с	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
J	,	-7.8		0	7.5	22.3	24.1		6	7.5	10.2

[2]

(b) On the grid, draw the graph of $y = 3x + \frac{2}{x^2} + 1$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

[5]

(c) Write down the value of the largest integer, k, so that the equation $3x + \frac{2}{x^2} + 1 = k$ has exactly one solution.

 $k = \dots [1]$

(d)	(i)	By drawing a suitable straight line on the grid, solve	$3x + \frac{2}{x^2} + 1 = 15 - 3x.$
-----	-----	--	-------------------------------------

$$x = \dots$$
 or $x = \dots$ [4]

(ii) The equation $3x + \frac{2}{x^2} + 1 = 15 - 3x$ can be written in the form $ax^3 + bx^2 + cx + 2 = 0$, where a, b and c are integers.

Find a, b and c.

3	(a)	Solve.	8x - 5 = 22 - 4x		
	(b)	Solve.	$6x \geqslant 2x + 14$		x =[2]
	(c)	Factorise	$x^2 - 4x - 21$		[2]
	(d)	Expand t	he brackets and simplify.	(3x - 2y)(4x + 3y)	[2]
					[3]

11 Solve.
$$\frac{2}{x+3} + \frac{1}{12} = \frac{3}{2x-1}$$

Mathematics Paper 4

Algebra & Graphs

ANSWERS

2(a)(i)	3 2.25 1	3	B1 for each
2(a)(ii)	Fully correct smooth curve	4	B3FT for 7 or 6 correct plots B2FT for 5 or 4 correct plots B1FT for 3 correct plots
2(a)(iii)	-0.6 to -0.51, 0.75 to 0.85, 1.7 to 1.85	3	B1 for each If 0 scored, SC1 for $y = 1.5$ drawn
2(a)(iv)	−3 or −2 or −1 or 0	1	
2(b)(i)	Tangent ruled at $x = 1$	1	
2(b)(ii)	4.4 to 5.6	2	Dep on tangent at $x = 1$ or close attempt M1 for rise/run for <i>their</i> line
2(b)(iii)	y = (4.4 to 5.6)x - (1.8 to 2.2) or [y =] their (b)(ii)x + their(y-intercept)	2	FT for any line but not horizontal or vertical line for 2 marks or B1 B1FT for [m =] their 5 or for their y-intercept
5(a)	$\frac{10x}{(x-3)(x+2)} \text{ or } \frac{10x}{x^2 - x - 6}$ final answer	4	M1 for common denominator $(x-3)(x+2)$ isw M1 for $(x+3)(x+2)-(x-2)(x-3)$ isw B1 for correct numerator in terms of x only
5(b)	14	2	M1 for $12 - \frac{k}{2} = 5$ or $2^{\frac{k}{2}} = \frac{2^{12}}{2^5}$ oe or $\frac{4096}{32}$ or $12 - 5$ or $2^{12} \div 2^{\frac{14}{2}}$ [= 32] seen
5(c)	$2y^3 - 3y^2 - 23y + 12$ final answer	3	B2 for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of 2 of the brackets with at least 3 terms correct
5(d)	$[x=]\frac{3}{y-1}$ final answer	3	M1 for $xy = 3 + x$ M1 for $xy - x = 3$ or $x - \frac{x}{y} = \frac{3}{y}$ M1 for factorising and dividing
7(a)	n-5+3n+10 > 105 or better	B1	
	n > 25 final answer	B2	M1 for $4n > 100$

7(b)	4.8	3	M1 for $y = \frac{k}{x^2}$ or better M1 for $[y =] \frac{their k}{5^2}$ OR M2 for $y \times 5^2 = 7.5 \times 4^2$
10(a)(i)	4x-13 final answer	1	
10(a)(ii)	$25x^2$ final answer	1	
10(b)	$\frac{x+1}{4} \text{ or } \frac{x}{4} + \frac{1}{4}$	2	M1 for correct first step $x = 4y - 1$ or $y+1=4x$ or $\frac{y}{4} = x - \frac{1}{4}$
10(c)	0.6934 final answer	3	B2 for 0.69336 or $3^{-\frac{1}{3}}$ oe or 0.693 or M1 for $3^{-3^{-x}}$ oe
10(d)(i)	$(3x-2)^2-3^{-(-3)}$	M1	
	$9x^{2} - 6x - 6x + 4 - 27 \text{ or}$ $9x^{2} - 12x + 4 - 27$ leading to $9x^{2} - 12x - 23$	A1	with no errors seen
10(d)(ii)	$\frac{-(-12) \pm \sqrt{(-12)^2 - 4(9)(-23)}}{2 \times 9}$ or better	В2	B1 for $\sqrt{(-12)^2 - 4(9)(-23)}$ oe or $\frac{-(-12) + \sqrt{q}}{2 \times 9}$ oe or $\frac{-(-12) - \sqrt{q}}{2 \times 9}$ oe or both
	- 1.07, 2.40 final answers	В2	B1 for each If B0 , SC1 for answers – 1.1 or –1.06 or –1.065 to – 1.065 and 2.4 or 2.39 or 2.398 to 2.398 or – 1.07 and 2.40 seen in working or for –2.40 and 1.07 as final answer
10(e)	-5 final answer	2	M1 for $243 = 3^{-x}$

11(a)	(1, 2) (-1, 6)		5	B2 for [derivative oe =] $3x^2 - 3$ or B1 for [derivative oe =] $3x^2$ or $f(x) - 3$ M1 for <i>their</i> derivative = 0 or recognition of $\frac{dy}{dx} = 0$ oe B1 for $[x =]-1$, 1 or for one coordinate pair
11(b)	(1, 2) minimum with reason (-1, 6) maximum with reason		3	Reasons could be e.g. a reasonable sketch correct use of 2^{nd} derivative = $6x = 6$, $6 > 0$, so $(1, 2)$ minimum oe 2^{nd} derivative = $6x = -6$, $-6 < 0$ so $(-1, 6)$ maximum oe, or finds gradient on each side of both correct stationary points with correct conclusion B2 for 1 correct with reason or M1 for showing $[2^{nd}$ derivative = $]6x$ or gradients for one value on either side of one correct stationary point or for reasonable sketch of cubic
3(a)	75.6	2	2 1	M1 for $5.2 \times 7 + \frac{1}{2} \times 1.6 \times 7^2$
3(b)(i)	2a - 3b final answer	2		B1 for answer $2a + kb$ or $ka - 3b$ or for $2a - 3b$ seen in working
3(b)(ii)	$\frac{3}{4}$	2	2 I	31 for $\frac{45x}{60x}$ oe single fraction
3(c)(i)	-5	1	l	
3(c)(ii)	$-0.25 \text{ or } -\frac{1}{4}$	3	I N	M1 for $20 - 12x = 23$ or for $5 - 3x = \frac{23}{4}$ M1 for correct completion to $ax = b$ FT their first step
3(d)	$9x^{6}$	2	2 F	31 for $9x^k$ or kx^6
3(e)	$6x^2 - 7xy - 5y^2$	2		M1 for 3 terms out of 4 from $6x^2 - 10xy + 3xy - 5y^2$

6(a)	$y \geqslant x$ oe	1	
6(b)	$2.25x + 1.5y \le 22.5$ oe	M1	
	One step shown to $3x + 2y \le 30$	A1	
6(c)	y = 10 ruled	1	Broken line
	3x + 2y = 30 ruled	B2	Solid line B1 for line passing through (0, 15) or (10, 0)
	y = x ruled	B1	Solid line
	Correct region indicated	B1	
6(d)	412	2	M1 for $(4, 9)$ identified or for evaluation $40x + 28y$ for an integer point in the region $(x > 0)$ and $(x > 0)$
8(c)(i)	$(x+5)^2-11$	2	M1 for $(x + 5)^2 + k$ or $(x + their 5)^2 + 14 - (their 5)^2$ or $a = 5$
8(c)(ii)	Sketch of U-shaped parabola with a minimum indicated at (-5, -11) with no part of graph in 4 th quadrant	3	FT their $(x + 5)^2 - 11$ provided in that form B1 for U shape curve B1FT for turning point at $(-5, k)$ or $(k, -11)$
10(a)(i)	15.7 or 15.65	3	M2 for $\sqrt{(4-10)^2 + (4-3)^2}$ oe or M1 for $(-4-10)^2 + (4-3)^2$ oe
10(a)(ii)	$\frac{-10-4}{43} [=-2] \text{ oe}$	M1	
	10 = -2(-3) + c Or $-4 = -2(4) + c$ and correct completion to $y = -2x + 4$	A1	
10(a)(iii)	$y = \frac{1}{2} x + \frac{11}{4}$ oe	4	M1 for grad = $\frac{1}{2}$ soi M1 for [midpoint =] ($\frac{1}{2}$, 3) M1 for substitution of (1/2, 3) into their $y = mx + c$ oe
10(b)(i)	$\left(-\frac{1}{3}, -\frac{22}{27}\right)$ oe and (-5, 50)	6	B2 for $3x^2 + 16x + 5$ Or B1 for one correct M1 for derivative = 0 or <i>their</i> derivative = 0 M1 for $[x =] -\frac{1}{3}$ and $[x =] -5$ B1 for $-\frac{22}{27}$ and 50
10(b)(ii)	$ \left(-\frac{1}{3}, -\frac{22}{27}\right) $ minimum (-5, 50) maximum with correct reasons	3	B2 for one correct with reason or M1 for correct attempt e.g. 2 nd derivatives, gradients or sketching

	†	1	
6(a)	256	1	
6(b)	8	2	M1 for $3(x^2 + 1) + 2$ or for $3(2) + 2$
6(c)	$9x^2 + 12x + 5$	3	M1 for $(3x + 2)^2 + 1$ B1 for $[(3x + 2)^2 =] 9x^2 + 6x + 6x + 4$ oe
6(d)	16	2	M1 for $3x + 2 = 7^2 + 1$ or better
6(e)	$\frac{x-2}{3}$ oe final answer	2	M1 for $x = 3y + 2$ or for $y - 2 = 3x$ or for $\frac{y}{3} = x + \frac{2}{3}$
6(f)	$\frac{4x^2 + 2x + 1}{3x + 2} \text{final answer}$	3	B1 for $x^2 + 1 + x(3x + 2)$ or better seen M1 for common denominator $3x + 2$
6(g)	16	1	
9(a)(i)	$(x+4)^2-25$	2	B1 for $(x+k)^2 - 9 - (their k)^2$ or $(x+4)^2 - h$ or $k=4$
9(a)(ii)	$x+4=[\pm]5$	M1	FT their (a)(i)
	-9 and 1	A1	
9(b)	[b =] 7 [c =] -3	3	B1 for $[b =] 7$ M1 for $b^2 - 4c = 61$
9(c)(i)(a)	Correct sketch	2	B2 for correct quadratic curve with min touching <i>x</i> -axis or B1 for parabola vertex downwards

9(c)(i)(b)	Correct sketch	2	B2 for correct straight line intersecting curve on y-axis or B1 for straight line with positive gradient and positive y-intercept
9(c)(ii)	2.8[0] or 2.795	7	B3 for $x^2 - \frac{5}{2}x = 0$ oe or M1 for $(x-1)^2 = \frac{1}{2}x + 1$ B1 for $[(x-1)^2 =]x^2 - x - x + 1$ AND B2 for $(0, 1)$ and $(\frac{5}{2}, \frac{9}{4})$ oe or B1 $[x =]0$ and $(\frac{5}{2})$ oe AND M1 for (difference in $(x)^2 + (difference)$ in $(x)^2 + (difference)$
10(a)(i)	5	2	M1 for $(-1)^4 - 4(-1)^3$
10(a)(ii)	(0,0) and $(3,-27)$ $[p=] 11$	2	B2 for $4x^3 - 12x^2$ [= 0] or B1 for $4x^3$ or $12x^2$ AND M1 for derivative = 0 or <i>their</i> derivative = 0 M1 for $4x^2(x-3)$ [= 0] B1 for [x =] 0 and [x =] 3 or [y =] 0 and [y =] -27 or for one correct coordinate pair
	[<i>q</i> =] 5		or M1 for $\frac{dy}{dx} = px^{p-1} + 2qx^{q-1}$
4(a)	$m \ge 3.4$ oe final answer	2	M1 for $12 + 5 \le 8m - 3m$ or better or $3m - 8m \le -5 - 12$ or better

4(b)	x = -0.75 oe	3	M1 for $15(2x+5)=14(3-x)$ B1 for $30x+75=42-14x$ or better
4(c)	$3x^2 - 16x - 35[=0]$ or $3y^2 - 8y - 51[=0]$	М3	M1 for $x^2 + 2(4-x)^2 = 67$ or $(4-y)^2 + 2y^2 = 67$ seen B1 for $16 - 8x + x^2$ or $16 - 8y + y^2$
	(3x+5)(x-7) [= 0] or $(3y-17)(y+3)[= 0]$	M1	or for correct factors for <i>their</i> equation or for correct use of quadratic formula or completing the square for <i>their</i> equation
	$x = 7, y = -3$ $x = -\frac{5}{3}, y = 5\frac{2}{3}$	В2	B1 for $x = 7$, $x = -\frac{5}{3}$ or for $y = -3$, $y = 5\frac{2}{3}$ or for a correct pair of x and y values
5(a)	(4x-5)(x+3)+(x+1)(x-3) = 342 or $2x(4x-5)-(3x-6)(x-3) = 342$	M2	M1 for $(4x-5)(x+3)$ or $(x+1)(x-3)$ or for $2x(4x-5)$ or $(3x-6)(x-3)$
	$4x^{2}+12x-5x-15$ oe and $x^{2}+x-3x-3$ oe seen OR $8x^{2}-10x$ and $3x^{2}-15x+18$ seen	M2	M1 for each
	$5x^2 + 5x - 18 = 342$ leading to $x^2 + x - 72 = 0$	A1	no errors or omission
5(b)	(x+9)(x-8)	M2	B1 for $(x + a)(x + b)$ where $ab = -72$ or $a + b = 1$ and a , b are integers
	8, -9	B1	

9(a)(i)	$\frac{3}{8}$	2	M1 for $8y = 3x + 20$ or better
9(a)(ii)	(0, 2.5) oe	1	
(b)(i)	15.6 or 15.62	3	M2 for $\sqrt{(9-3)^2 + (-2-8)^2}$ oe seen or M1 for $(9-3)^2$ or $(-2-8)^2$ oe seen
9(b)(ii)	$y = -\frac{5}{6}x + 4 \text{ oe}$	3	M1 for gradient $\frac{-2-8}{93}$ oe M1 for substituting $(6, -1)$ into a linear equation oe
9(b)(iii)	$y = \frac{6}{5}x - \frac{3}{5}$ oe	4	M1 for gradient $-1 / their \left(-\frac{5}{6}\right)$ B1 for midpoint at (3, 3) M1 for <i>their</i> midpoint substituted into $y = their \ m \times x + c$ oe
10(a)(i)	x + 5	2	B1 for linear equation with positive gradient or intercept 5
10(a)(ii)	$2 \sin x$ oe	2	B1 for recognition of sin or $cos(x-90)$
10(b)	tangent ruled at P	B1	
	1.3 to 1.4	B2	dep on tangent drawn M1 for rise/run
11(a)	4	1	
11(b)	52	2	M1 for f(8) seen or $7 \times \frac{2x}{x-3} - 4$
11(c)	$7x^2 - 4$	1	
11(d)	$\frac{7x^2 - 21x + 12}{2(x - 3)} \text{ or } \frac{7x^2 - 21x + 12}{2x - 6}$ final answer	3	M1 for $(7x-4)(x-3)+2\times 2x$ B1 for denominator $2(x-3)$ or $2x-6$
11(e)	-3	2	M1 for $7x+14-4=-11$
11(f)	[p =] 0 and [p =] 1	2	B1 for each
12(a)(i)	$\left(-\frac{1}{2},4\right)$ and $\left(\frac{1}{2},2\right)$	5	B2 for $12x^2 - 3[=0]$ or B1 for $12x^2$ or -3 M1 for their derivative $= 0$ or $dy/dx = 0$ B1 for $[x =] - \frac{1}{2}$ and $\frac{1}{2}$ or one coordinate pair correct

12(a)(ii)	$\left(-\frac{1}{2}, 4\right)$ Max with reason $\left(\frac{1}{2}, 2\right)$ Min with reason	3	B2 for one correct with reason or M1 for correct attempt to find e.g. 2nd derivative/gradients/sketch
12(b)	line $y = x + 3$ ruled	M2	B1 for $[y=]x+3$ identified or rules $y = x + k$ or $y = px + 3$
	-0.7 to -0.8 2.7 to 2.8	A1	
		1	
5(a)(i)	2.7 to 2.8	1	

5(a)(ii)	tangent ruled at $x = -2$	B1	
	6 to 10	2	dep on B1 or a close attempt at tangent at $x = -2$ or M1 for rise/run for <i>their</i> tangent, or close attempt, at any point Must see correct or implied calculation from a drawn tangent After M0, SC1 for gradient of tangent (or
			close attempt) in range embedded in $y = mx + c$
5(a)(iii)	y = 2x - 2 ruled and $x = -2.9$ to -2.8 cao	3	B2 for correct ruled line or B1 for short line or for freehand line or broken line or ruled line with gradient 2 or with y-intercept at -2 (but not $y = -2$)
5(b)	A (4, 17) B (-1.5, 0.5)	5	B4 for (-1.5, 0.5) and (4, 17), or for $x = 4$ and $x = -1.5$ OR B3 for A(4, 17) or B(-1.5, 0.5) OR M1 for $2x^2 - 2x - 7 = 3x + 5$ oe AND either M2 for $(2x + 3)(x - 4)$ or M1 for $2x(x - 4) + 3(x - 4)$ or $x(2x + 3) - 4(2x + 3)$ or $(2x + c)(x + d)$ where $cd = -12$ or $c + 2d = -5$ [c and d are integers] OR M2 for $\frac{-their b \pm \sqrt{(their b)^2 - 4(their a)(their c)}}{2(their a)}$ or M1 for $\sqrt{(their b)^2 - 4(their a)(their c)}$ or for $p = -their b$, $r = 2(their a)$ if in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$

———		—	
8(a)	ab(3a - b) final answer	2	B1 for $a(3ab - b^2)$ or $b(3a^2 - ab)$ or $ab(3a - b)$ seen
8(b)	x > 7.5 final answer	2	B1 for $12+3 < 5x - 3x$ oe
8(c)	$27x^6y^{12}$	2	B1 for two of 27, x^6 and y^{12} correct
8(d)	0.5 or $\frac{1}{2}$	3	M2 for $4 = 6x + 2x$ or better or M1 for $2(2-x) = 6x$ oe
8(e)	$2x^3 + 5x^2 - 23x + 10$ final answer	3	B2 for correct expansion of three brackets unsimplified B1 for correct expansion of two brackets with at least 3 terms correct

10(a)(i)	A(-4, 0) B(1, 0) C(0, -4)	4	B3 for A and B correct Or B2 for B (-4, 0) and A (1, 0) Or B1 for $(x + 4)(x - 1)$ or for $\frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times -4}}{2}$ oe and B1 for A or B correct B1 for C(0, -4) OR SC2 for -4, 1 and -4 in correct positions on the graph
10(a)(ii)	$2x + 3 [\pm 0]$ final answer	2	B1 for answer $2x + c$ or for $ax + 3$, $a \ne 0$ or for correct answer seen
10(a)(iii)	y = 7x - 8 oe	3	B2 for answer $7x - 8$ OR M1 for [gradient =] $2(2) + 3$ FT their part (a)(ii) of the form $ax + b$ M1dep for substitution of (2, 6) into $y = their mx + c$ oe
10(b)(i)	Correct sketch 90 180 270 360	2	B1 for one correct section out of 4 OR B1 for two properties correct from • Crosses x-axis at (0, 0) (180, 0) and (360, 0) only • Correct curvature in each section of 90° • Asymptotes at x = 90 and x = 270
10(b)(ii)	125.5 or 125.53 to 125.54 and 305.5 or 305.53 to 305.54	3	B2 for one correct angle or B1 for -54.5 or -54.46 or for 2 angles with a difference of 180.
5(a)	1.48	3	B2 for $7x + 2 = 12.36$ or better or M1 for $3x + 2(2x + 1)$ [= 12.36] or better
5(b)	1.75 or $1\frac{3}{4}$	3	B2 for $18x - 14x = 7$ or better or M1 for $18x = 7(2x + 1)$
5(c)	[0].8 oe	3	B2 for $4(2x + 1) = 13x$ or M1 for $\frac{4}{x} = \frac{13}{2x+1}$ oe or correct equation to find number of cakes

5(d)	$\frac{20}{x} + \frac{10}{2x+1} = 45$ oe	M2	B1 for $\frac{20}{x}$ seen or $\frac{10}{2x+1}$ seen
	$90x^2 - 5x - 20 = 0$ oe	B2	B1 for $\frac{20(2x+1)+10x}{x(2x+1)} = 45$ or better
	$\frac{(9x+4)(2x-1) [= 0] \text{ or for}}{\frac{1\pm\sqrt{(-1)^2-4(18)(-4)}}{2(18)}} \text{ oe}$	M2	FT <i>their</i> 3-term quadratic M1 for factors that give two correct terms when expanded -b
			or for correct discriminant or correct $\frac{-b}{2a}$
			provided quadratic formula is in correct form
	[0].5 or $\frac{1}{2}$ final answer	B1	
7(a)	2, 4.5	2	B1 for each
7(b)	Correct graph	4	B3 FT for 6 or 7 correct points FT <i>their</i> table or B2 FT for 4 or 5 correct points FT <i>their</i> table or B1 FT for 2 or 3 correct points FT <i>their</i> table
7(c)(i)	-0.5 to -0.4	1	
7(c)(ii)	y = 1 - x ruled and -1.9 to -1.75	2	M1 for $[y =] 1 - x$ or $\left[x^2 + \frac{1}{x} = \right] 1 - x$ soi or B1 for -1.9 to -1.75
7(d)	Any integer ≥ 2	1	

10(a)(i)	10	1	
10(a)(ii)	-19	1	FT 1 – 2 their (a)(i)
10(b)	$\frac{1-x}{2}$ oe final answer	2	M1 for $x = 1 - 2y$ or $y + 2x = 1$ or $\frac{y}{2} = \frac{1}{2} - x$ or $y - 1 = -2x$ or better
10(c)	$\frac{1}{2}$ oe	1	
10(d)	$4x^2 - 8x + 2$ final answer	4	M1 for $(1-2x)(1-2x) - (1-2(1-2x))$ or better B1 for $1-2x-2x+4x^2$ B1 for $-(1-2+4x)$ or better or [+] $1-4x$ or for correct answer seen then spoiled
10(e)	x final answer	1	
10(f)	3125	1	
10(g)	25	1	
10(h)	-2	2	B1 for $\frac{1}{25}$ or 0.04
7(a)(i)	(8-x)(3+x)		2 M1 for $8(3+x) - x(3+x)$ or $3(8-x) + x(8-x)$ or $(a-x)(b+x)$ where $ab = 24$ or $a-b=5$
7(a)(ii)	[a =] -3 [b =] 8 [c =] 24		3 FT their (a)(i) for a and b B1FT for each of a and b or both correct but reversed B1 for [c =] 24
7(a)(iii)	8		3 M2 for $5-2x$ or M1 for $-2x$ or $5-kx$, $k \neq 0$
7(b)(i)	Correct sketch: positive cubic shape and max on the y-axis or to the right of y-axis with one root at (-1, 0) and turning point at (3, 0) and y-intercept at (0, 9) all labelled		4 B1 for positive cubic shape with max on the y-axis or to the right of y-axis B1 for root at (-1, 0) B1 for turning point at (3, 0) B1 for y-intercept (0, 9) If 0 score SC1 for all three intercepts on axes identified
7(b)(ii)	$x^3 - 5x^2 + 3x + 9 \text{final answer}$		 B2 for correct expansion of three brackets unsimplified B1 for correct expansion of two brackets with at least 3 terms correct

9(a)	2, 3, 4, 5	2	B1 for 3 correct and no extra or 4 correct and one extra or M1 for $1 < x \le 5$
9(b)(i)	3y(2y-5x)	2	B1 for $3(2y^2 - 5xy)$ or $y(6y - 15x)$ or for the correct answer seen and then spoiled
9(b)(ii)	(y-3x)(y+3x)	2	B1 for $(y+3)(y-3)$
9(c)	$\frac{4x+5}{(x-1)(2x+1)}$ or $\frac{4x+5}{2x^2-x-1}$ final answer	3	M1 for $3(2x+1)-2(x-1)$ oe isw M1 for $(x-1)(2x+1)$ oe isw
9(d)	(1.74, 7.21 to 7.24) and (-3.74, -9.20 to -9.22) cao	6	For the y values accept any value rounded to 2 decimal places in the given range B5 for (1.74, 7.21 to 7.24) or (-3.74, -9.20 to -9.22) or $x = 1.74$ and $x = -3.74$ OR M2 for $2x^2 + 4x - 13 = 0$ or $2y^2 + 4y - 133 = 0$ or M1 for $2x^2 + 7x - 11 = 3x + 2$ or $y = 2\left(\frac{y-2}{3}\right)^2 + 7\left(\frac{y-2}{3}\right) - 11$ AND FT their quadratic expression (not $2x^2 + 7x - 11$) M2FT for $\frac{-4 \pm \sqrt{4^2 - 4 \times 2 \times -13}}{2 \times 2}$ or $-1 \pm \sqrt{\frac{15}{2}}$ oe or M1FT for $\sqrt{4^2 - 4 \times 2 \times -13}$ oe or for $\frac{-4 + \sqrt{k}}{2 \times 2}$ or $\frac{-4 - \sqrt{k}}{2 \times 2}$ or $(x + 1)^2 [-13/2 - 1 = 0]$
10(a)	-23	2	M1 for $4 - 3(3^x)$ oe soi
10(b)	$\frac{4-x}{3}$ oe final answer	2	M1 for $x = 4 - 3y$ or $y + 3x = 4$ or $x + 3y = 4$ or $\frac{y}{-3} = \frac{4}{-3} + x$ oe or $\frac{x}{-3} = \frac{4}{-3} + y$ oe
10(c)(i)	1 + 6x final answer	2	M1 for $4 - 3(1 - 2x)$

10(c)(ii)	20 - 36x or $4(5 - 9x)$ final answer	4	B3 for $20 - 36x$ seen in working then spoiled OR M1 for $(4 - 3x)^2 + 4 - 3x - 9(x^2 + x)$ or better B1 for $[(4 - 3x)^2 =] 16 - 12x - 12x + 9x^2$ or better B1 for answer $20 - kx$ or $k - 36x$ oe or answer $20 - 36x + kx^2$ $k \ne 0$
10(d)	$-\frac{1}{2}$ oe	2	M1 for $(3^2)^{kx}$ or $9^{kx} = 9^{-\frac{1}{2}x}$ oe
5(a)	-2.1, 1.6, -1.7, 2.1	3	B2 for 3 correct or B1 for 2 correct
5(b)	Fully correct curve	4	B3FT for 8 or 9 correct plots or B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
5(c)	line $y = \frac{1}{2}(1-x)$ ruled	M2	M1 for line with gradient $-\frac{1}{2}$ M1 for line through $(0, \frac{1}{2})$ but not $y = \frac{1}{2}$
	-2.15 to -2.01 -0.45 to -0.2 2.25 to 2.45	В2	B1 for two correct
5(d)	number of intersections of <i>their</i> curve and the line $y = 1$	1	strict FT for <i>their</i> curve
8(a)	-3	1	
8(b)	$\frac{12}{11}$ oe	2	M1 for $\frac{3}{\frac{3}{x+2}+2}$ soi
8(c)	64x - 45 final answer	2	M1 for $8(8x-5)-5$ isw
8(d)	$\frac{x+5}{8}$ oe final answer	2	M1 for a correct first step $y + 5 = 8x$, $\frac{y}{8} = x - \frac{5}{8}$ or $x = 8y - 5$
8(e)	$\frac{8x^2 + 11x - 13}{x + 2}$ final answer	3	M1 for $(8x-5)(x+2)-3$ oe isw B1 for common denominator $(x+2)$

8(f)(i)	$(8x-5)^2 + 6 = 19$	M1	
	$64x^2 - 40x - 40x + 25$	B1	
	$64x^2 - 40x - 40x + 25 + 6 = 19 \text{ oe}$ leading to $16x^2 - 20x + 3 = 0$	A1	with no errors and must show $(8x-5)^2 + 6 = 19$ with no omissions after this
8(f)(ii)	$\frac{[]20 \pm \sqrt{([-]20)^2 - 4(16)(3)}}{2 \times 16} \text{ oe}$	2	B1 for $\sqrt{([-]20)^2 - 4(16)(3)}$ or better
			or B1 for $\frac{[]20 + \sqrt{q}}{2(16)}$ oe or $\frac{[]20 - \sqrt{q}}{2(16)}$
	0.17 and 1.08 final ans	2	B1 for each If 0 scored, SC1 for answer 0.2 and 1.1 or answer – 0.17 and –1.08 or 0.174 and 1.075 to 1.076 seen or 0.17 and 1.08 seen in working
10(a)	correctly equating one set of coefficients	M1	or making x or y the subject of one equation correctly
	correct method to eliminate one variable	M1	or substitution for x or y for their rearranged formula
	x = 7 $y = -3$	A2	A1 for one correct value If A0 scored, SC1 for 2 values satisfying one of the original equations or if no working shown, but 2 correct answers given
10(b)	2	3	M1 for $y = \frac{k}{(x+3)^2}$ oe M1 for $y = \frac{their \ k}{(7+3)^2}$ oe OR M2 for $8(2+3)^2 = y(7+3)^2$ oe
10(c)	x > -5 final answer	3	M1 for $3x-6 < 7x+14$ M1 for $their(-6)-their14 < 7x-3x$ oe

2(a)	2, 2, 6	3	B1 for each
2(b)	Correct graph	4	B3FT for 10 or 11 correct plots or B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots
2(c)	-3.3 to -3.1	1	FT their graph
2(d)	y = -2x ruled	M1	or B1 for $y = -2x$ stated
	-2.6 to -2.45	A1	
2(e)	3 or 4 or 5	1	FT their graph Allow more than one correct value
7(a)(i)	1.991×10^3	4	B3 for 1991 or 1.99 × 10 ³ or 1.991 × 10 ³ or B2 for 1990 or 1991
			M1 for $104.3 \times 26.5 + \frac{1}{2} \times (-2.2) \times 26.5^2$ oe B1 for <i>their</i> seen value correctly rounded to 4 sf B1 for <i>their</i> seen value correctly converted into standard form
7(a)(ii)	$\frac{2(s-ut)}{t^2}$ oe final answer	3	M1 for correct multiplication by 2 oe M1 for correct rearrangement to isolate term with a M1 for correct division by t^2 for 3 marks e.g. cannot have a fraction in denominator nor $\div t^2$ in numerator
7(b)(i)	(2x+3)(x-1)-(x+1)(x-2)=62	M1	
	$2x^2 + 3x - 2x - 3$ oe or $x^2 + x - 2x - 2$ oe	B1	
	$x^2 + 2x - 63 = 0$	A1	Established with no errors or omissions
7(b)(ii)	(x+9)(x-7)	2	B1 for $(x+a)(x+b)$ where $ab = -63$ or $a+b=2$ or for $x(x-7)+9(x-7)$ or for $x(x+9)-7(x+9)$
7(b)(iii)	20	2	FT $2 \times their$ positive root + 6 M1 for substituting <i>their</i> positive root into four lengths or for stating $2x + 6$

9(a)	82		2	M1 for $(3^x)^2+1$ soi by $(3^2)^2+1$ or $g(9)$ isw
9(b)	$\frac{x+2}{7}$ final answer		2	M1 for $y + 2 = 7x$ or $\frac{y}{7} = x - \frac{2}{7}$ or $x = 7y - 2$
9(c)	[a =] 1, [b =] 2, [c =] 2		3	B2 for $x^4 + x^2 + x^2 + 1 + 1$ or M1 for $(x^2 + 1)^2 + 1$
9(d)	$\frac{6}{7}$ oe		3	M2 for $7x - 2 = 4$ or M1 for $3^x = 81$ soi $f(x) = 4$ or for $3^{7x-2} = 81$ or better
3(b)(iii)	$(5r-9)(2r-1) = 0$ $[r=] \frac{9}{5} \text{ oe } [r=] \frac{1}{2} \text{ oe}$	B2	or B1 or 2 <i>r</i> (or (5 <i>r</i> and <i>a</i>	for e.g. $5r(2r-1) - 9(2r-1)$ and then $9 = 0$ and $2r - 1 = 0$ for $5r(2r-1) - 9(2r-1)$ [= 0] (5r-9) - 1(5r-9) [= 0] (r+a)(2r+b) [= 0] where a, b are integers $a = 0$ or $a = 0$ or $a = 0$ and $a = 0$ seen but a factorised form

4(a)(i)	1.5 oe	1	
4(a)(ii)	(0, 2)	1	
4(b)(i)	y = -2x + 6 oe final answer	3	B2 for $y = -2x + c$ oe or $y = mx + 6$ oe $m \ne 0$ or for answer $-2x + 6$ or B1 for [gradient =] $-\frac{6}{3}$ oe or $c = +6$ soi
4(b)(ii)	y = 0.5x - 1.5 oe final answer	3	B1 for [gradient =] – 1 divided by <i>their</i> gradient from (b)(i) evaluated soi M1 for substitution of (9, 3) into $y = (their \ m)x + c$ seen in working
4(c)(i)	12.6 or 12.64 to 12.65	3	M2 for $\sqrt{(84)^2 + (5-1)^2}$ oe or M1 for $(84)^2 + (5-1)^2$ oe
4(c)(ii)	(2, 3)	2	B1 for each
5(a)	2.45, 0.25, - 0.25	3	B1 for each
5(b)	Fully correct smooth curve	4	B3FT for 6 or 7 points or B2 FT for 4 or 5 points or B1 FT for 2 or 3 points
5(c)	0.7 to 0.8	1	FT their curve
5(d)(i)	Correct ruled line	2	M1 for good freehand, or ruled line with gradient -1.05 to -0.95 or ruled line through $(0, 2)$ but not line $y = 2$

5(d)(ii)	Both intersections of their (b) and their (d)(i)	2	Strict FT intersection of their (b) and their (d)(i) B1FT for one correct OR B2 for 0.27 to 0.28 and 2.38 to 2.39
5(e)	Substitutes $x = \sqrt{2}$ into $\frac{1}{2x} - \frac{x}{4}$ OR Identifies $y = 0$ oe OR Correctly manipulates to a single fraction e.g. $\frac{2-x^2}{4x}$ oe seen	M1	
	Concludes 'read the graph at $y = 0$ ' oe OR Manipulates $0 = \frac{1}{2x} - \frac{x}{4}$ oe leading to $x^2 = 2$ OR States $\frac{2-x^2}{4x}$ oe = 0 leading to $x^2 = 2$	A1	
6(a)	$x^2 + 4x - 21$ final answer	2	B1 for three of x^2 , +7x, -3x, -21
6(b)(i)	$5q^2(3p^2-5q)$ final answer	2	B1 for $5(3p^2q^2 - 5q^3)$ or $q^2(15p^2 - 25q)$ or $q(15p^2q - 25q^2)$ or $5q(3p^2q - 5q^2)$ or for correct answer seen
6(b)(ii)	(2g+5k)(2f+3h) final answer	2	B1 for $2g(2f+3h)+5k(2f+3h)$ or $2f(2g+5k)+3h(2g+5k)$ or for correct answer seen
6(b)(iii)	(9k+m)(9k-m) final answer	2	M1 for $(9+m)(9-m)$ or for correct answer seen
6(c)	5.5	4	M1 for $5 \times 3(x-4) + x + 2 = 5 \times 6$ M1 for $15x - 60 + x + 2 = 30$ FT their first step or $3x - 12 + \frac{x+2}{5} = 6$ If M0M0, SC1 for $3x - 12 + x + 2 = 30$ oe M1dep for $16x = 88$ FT their previous steps

2(a)	-10	2	M1 for $-17 - 3 = 7x - 5x$ oe or better
2(a)	-10	2	Will for $-1/-3 = /x - 3x$ be of better
2(b)	-1, 0, 1, 2 final answer	3	B2 for 3 correct values and no incorrect values or 4 correct values and one incorrect value
			or M2 for $-\frac{7}{4} < n \le 2$ oe
			or M1 for $-\frac{7}{4} < n \le k$ or $k < n \le 2$ oe
2(c)(i)	a^9	1	
2(c)(ii)	$125x^3y^6$ final answer	2	B1 for 2 correct elements if in form kx^ny^m
2(c)(iii)	$\frac{4y^{[1]}}{3x^4}$ final answer	3	B2 for $\left(\frac{3x^4}{4y^{[1]}}\right)^{[-1]}$ oe seen
			B1 for $3x^4$ or $4y^{[1]}$ and
			M1 for $\left(\frac{64y^3}{27x^{12}}\right)^{\left[\frac{1}{3}\right]}$ oe
			If 0 scored, SC1 for $\frac{64y^{[1]}}{27x^4}$ or $\frac{0.333x^{-4}}{0.25y^{-1}}$ seen
5(a)(i)	-3	1	
5(a)(ii)	6.2 to 6.4 oe	2	M1 for 3 seen or used
5(b)	y = 5 - 3x ruled	2	B1 for $y = 5 - 3x$ soi or ruled line with gradient -3 or with y – intercept at 5 (but not $y = 5$) or B1FT for incorrect line equation/expression shown in working and <i>their</i> line correctly drawn
	- 0.3 to - 0.2 1.65 to 1.8	2	B1 for each, dep on $y = 5 - 3x$ drawn or FT their line provided equation/expression shown in working, dep on B1FT for line
5(c)	Tangent ruled at $x = -2$	1	B1 for correct tangent
	-4.5 to -2.5	2	Dep on B1 for tangent or close attempt at tangent at $x = -2$
			M1 for rise/run also dep on tangent drawn or close attempt at correct tangent Must see correct or implied calculation from a drawn tangent
5(d)(i)	8, 4, 0.25 oe	3	B1 for each
5(d)(ii)	Correct graph	3	B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
5(d)(iii)	1.8 to 1.9	1	

	1		
7(a)	[y =] 4x + 5	3	B2 for answer $[y =]4x + c$ oe (c) can be numeric or algebraic) OR M2 for $\frac{y-9}{x-1} = \frac{9-(-3)}{1-(-2)}$ oe OR M1 for $\frac{93}{12}$ oe or for M1 for correct substitution of $(-2, -3)$ or $(1, 9)$ into $y = (their m)x + c$ oe
7(b)	76[.0] or 75.96	2	M1 for tan[] = 4 oe
7(c)(ii)	$[y=] -\frac{1}{4}x + \frac{23}{8} \text{ oe}$ $(-4.5, 4)$	2	B2FT for $[y =]$ $-\frac{1}{their}$ gradient from (a) $x + c$ oe (c can be numeric or algebraic) OR M2 for $\frac{y-2}{x-3.5} = -\frac{1}{their}$ gradient from (a) oe OR M1 for $-\frac{1}{their}$ gradient from (a) soi M1 for correct substitution of (3.5, 2) into $y = (their \ m)x + c$ oe
8(a)(ii)(b)	$(4x+3)(x-7) = 0$ $7 \text{ and } -\frac{3}{4}$	M2	M1 for $4x(x-7) + 3(x-7)$ or $x (4x+3) - 7(4x+3)$ or for $(4x+a)(x+b)$ where either $ab = -21$ or $4b+a=-25$ If 0 scored, SC1 for $4x+3$ and $x-7$ seen but not in factorised form

7(a)	9	3	M2 for $0.42x + 0.42 = 4.2$ oe or better
			or M1 for $0.21x + 0.21(x + 2)$ oe [= 420 or
			$\begin{bmatrix} 4.20 \\ \text{or for } 21x + 21(x + 2) \text{ oe } [= 420 \text{ or } 4.20] \end{bmatrix}$
			or for 420 ÷ 21 oe [=20]
7(b)	5r + p = 245	B1	
	2r + 3p = 215	B1	
	45	3	Finds p M1 for correctly equating coefficients of r M1 for correct method to eliminate r OR M1 for correctly making r the subject of one of their equations M1 for correctly substituting their correct r to form an equation in p OR Finds r first M1 for correctly eliminating p from their equations M1 for correctly substituting their value of r to find p
7(c)(i)	$\frac{12}{x} + \frac{6}{x-1} [=5]$	M1	
	12(x-1) + 6x = 5x(x-1)	M1	Dependent on previous M1 earned May be over common denominator
	$5x^2 - 23x + 12 = 0$ reached, with at least one more line of working and with no errors or omissions	A1	
7(c)(ii)	(5x-3)(x-4) final answer	2	B1 for $(5x + a)(x + b)$ with $ab = 12$ or $a + 5b = -23$
			or for $5x(x-4) - 3(x-4)$ or $x(5x-3) - 4(5x-3)$
7(c)(iii)	$\frac{3}{5}$ oe and 4	1	FT from their two brackets in (c)(ii)
7(c)(iv)	3 cao	1	

9(a)	$x + y \ge 6$ oe $y \le x$ oe $x \le 8$	3	B1 for each
9(b)	$4x + 6y \leqslant 60$	1	
9(c)	Correct region indicated cao	6	B1 for $x + y = 6$ ruled and long enough
			B1 for $x = y$ ruled and long enough
			B1 for $x = 8$ ruled and long enough
			B2 for $2x + 3y = 30$ ruled and long enough or B1 for ruled line through $(0, 10)$ or $(15, 0)$ but not $y = 10$ or $x = 15$
9(d)(i)	6, 6	1	
9(d)(ii)	34	2	M1 for trying $4x + 6y$ with $(4, 3)$ or $(5, 2)$ or $(6, 1)$ or $(7, 0)$
3(a)(i)	(3, 5.5)	2	B1 for either value correct
3(a)(ii)	$\frac{5}{4}x + \frac{7}{4}$ final answer	3	B2 for answer $\frac{5}{4}x + c$ oe or for correct equation in different form or M1 for $\frac{8-3}{5-1}$ oe and M1 for correct substitution shown of (1, 3) or (5, 8) or <i>their</i> (a)(i) into $y = (their \ m)x + c$ oe

5(a)	3.5, 15, 3.9	3	B1 for each
5(b)	Correct graph	5	B4 for correct curves but branches joined or touching y-axis or B3FT 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points B1indep two separate branches not touching or crossing y-axis
5(c)	0.5 to 0.6 and 1.3 to 1.6	2	B1 for each or both correct but in reverse order
5(d)	1	1	
5(e)(i)	y = 3x + 1 ruled and 0.3 to 0.49	3	B2 for correct ruled line that crosses <i>their</i> curve or B1 for $y = 3x + 1$ soi or freehand line or ruled line with gradient 3 or with y – intercept at 1 (but not $y = 1$)
5(e)(ii)	[a=]-6	3	M2 for $x^4 + 2 - 4x = 6x^3 + 2x^2$ or better seen
	[a =] -6 [b =] -2 [c =] -4		or B1 for each correct value to a maximum of 2 marks
			If 0 scored, SC1 for answer $[a =]$ 6, $[b =]$ 2 and $[c =]$ 4
			or for $x^5 + 2x - 4x^2 = 6x^4 + 2x^3$ or better
7(a)(i)	13	1	
7(a)(ii)	3	2	M1 for $h\left(\frac{10}{30}\right)$ oe soi or $27^{\frac{10}{x}}$
7(a)(iii)	$\frac{7-x}{2}$ oe final answer	2	M1 for $x = 7 - 2y$ or $y - 7 = -2x$ or $7 - y = 2x$ or $-\frac{y}{2} = -\frac{7}{2} + x$ oe
7(b)	0.75 oe final answer	3	M1 for $\frac{10}{2x+1} = 4$ M1 for $10 = 8x + 4$ or better
7(c)	$\frac{70-19x}{x(7-2x)} \text{ or } \frac{70-19x}{7x-2x^2} \text{ final}$ answer	3	M1 for $x + 10(7 - 2x)$ or better isw B1 for common denominator $x(7 - 2x)$ oe isw
7(d)	3 final answer	1	
8(a)(i)	$\frac{m-7}{5}$ oe final answer	2	M1 for $5p = m - 7$ or $p + \frac{7}{5} = \frac{m}{5}$
8(a)(ii)	$[\pm]\sqrt{\frac{y^2-h}{2}}$ or $[\pm]\sqrt{\frac{h-y^2}{-2}}$ oe final answer	3	M1 for first correct step isolate term in p or divide by ±2 M1 for second correct step FT their first step

2(a)(i)	2a + a + 2b + 3b + 10 = 180 leading to $3a + 5b = 170$ without error or omission	1	
2(a)(ii)	8a + 3a + 2b + b + 50 + 4b - 2a = 360 leading to $9a + 7b = 310$ without error or omission	1	
2(a)(iii)	Correct method to eliminate one variable	M1	
	[a =]15 [b=]25	A2	A1 for each correct value If 0 scored, SC1 for two values that satisfy one of the equations or for two correct answers with no/incorrect working
2(a)(iv)	30	1	
2(b)	$-1.5 \text{ or } -1\frac{1}{2} \text{ or } -\frac{3}{2}$	2	M1 for $6x = -12 + 3$ or better
2(c)	$\frac{3x+3}{2}$ oe final answer	3	M1 for $8x - 2y = 5x - 3$ or $4x - y = \frac{1}{2}(5x - 3)$ M1FT for isolating the y term correctly
2(d)	$9x^6$	2	M1 for $(3x^3)^2$ or $(729x^{18})^{\frac{1}{3}}$ seen or for $9x^k$ or kx^6 as final answer
2(e)	$\frac{x}{x-5}$ final answer nfww	3	M1 for $x(x+5)$ M1 for $(x-5)(x+5)$
3(a)	5, -3, 21	3	B1 for each
3(b)	Fully correct curve	4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
3(c)	-2.9 to -2.7 0 1.7 to 1.9	2	B1 for 2 correct values
3(d)	Tangent ruled at $x = 2$	B1	
	10 to 14	B2	Dep on correct tangent or close attempt at tangent at $x = 2$ M1 for rise/run also dep on correct tangent drawn or close attempt at tangent Must see correct or implied calculation from a drawn tangent
3(e)	6	1	

9(a)(i)	5	1	
9(a)(ii)	1	2	M1 for h(0) or 3^{9-x^2} or better
9(a)(iii)	$9-4x^2$ final answer	1	
9(a)(iv)	$15 - 2x^2$ final answer	2	M1 for $2(9-x^2)-3$ or better
9(b)	$\frac{x+3}{2}$ final answer	2	M1 for $x = 2y - 3$ or $y + 3 = 2x$ or better or $\frac{y}{2} = x - \frac{3}{2}$
9(c)	1.8 or $1\frac{4}{5}$ or $\frac{9}{5}$	2	M1 for $10x - 15 = 3$ or $2x - 3 = \frac{3}{5}$
9(d)	-1 and 4 nfww	4	M1 for $9 - (2x - 3)^2 = -16$ A1 for $4x^2 - 12x - 16 = 0$] oe M1 (dep on first M1) for correct factors or use of formula or completing the square for their 3-term quadratic OR M1 for $9 - y^2 = -16$ A1 for $y^2 = 25$ M1 (dep on first M1) for $2x - 3 = \pm 5$
9(e)	$\frac{1}{9}$	1	
10	x + 1 - 2x = 3x(x+1)	M2	M1 for a common denominator of $x(x+1)$ seen or attempt to multiply through by denominators or for $\frac{x+1-2x}{x(x+1)} = 3$
	$3x^2 + 4x - 1 = 0$ oe nfww	A1	
	$[x=] \frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times (-1)}}{2 \times 3}$	В2	B1FT for $\sqrt{4^2 - 4 \times 3 \times (-1)}$ or better or for $\left(x + \frac{2}{3}\right)^2$ B1FT for $\frac{-4 + \sqrt{q}}{2 \times 3}$ or $\frac{-4 - \sqrt{q}}{2 \times 3}$ or for $-\frac{2}{3} \pm \sqrt{\frac{1}{3} + \left(\frac{2}{3}\right)^2}$
	-1.55 and 0.22 final answers	В2	B1 for each or B1 for -1.548 to -1.549 and 0.215 or for -1.55 and 0.22 seen in working or for -0.22 and 1.55 as final answer or for -1.5 or -1.54 and 0.2 or 0.21 as final answer

3(a)	0 -0.17 2.4	3	B1 for each
3(b)	Fully correct smooth curve	4	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
3(c)	$x \le 0.17 \text{ to } 0.25$ and $x \ge 2.25 \text{ to } 2.3$	3	B2 for strict inequalities or one correct or B1 for 0.17 to 0.25 and 2.25 to 2.3 seen
3(d)(i)	y = 4 - x oe final answer	2	B1 for $4-x$ or $y = k-x$ or $y = 4+kx$ oe
3(d)(ii)	correct ruled line	1	FT if in form $y = mx + c$ oe $(m, c \neq 0)$
	0.125 to 0.2 and 2.15 to 2.2	2	B1 for each
4(a)	$[\pm]\sqrt{k-s}$ final answer	2	$\mathbf{M1} \text{ for } t^2 = k - s$
4(b)(i)	(x-5)(x+5) final answer	1	
4(b)(ii)	$\frac{x-5}{x-7}$ nfww final answer	3	M2 for $(x-7)(x+5)$ or M1 for $x(x+5)-7(x+5)$ or $x(x-7)+5(x-7)$ or $(x+a)(x+b)$ where $a+b=-2$ or $ab=-35$
4(c)	$\frac{4x^2 - 7x - 8}{x(x+1)} \text{ or}$ $\frac{4x^2 - 7x - 8}{x^2 + x} \text{ final answer}$	3	M1 for $(x-8)(x+1)+3x\times x$ oe isw B1 for common denominator $x(x+1)$ oe isw
4(d)	3, 4, 5, 6 nfww	3	B2 for 3 correct or 4 correct and 1 extra or M2 for $n > \frac{18}{8}$ oe and $n \le 6$ or M1 for $18 < 8n [\le 30 + 3n]$ or $[18 - 3n <] 5n \le 30$ seen
6(a)	<i>y</i> > <i>x</i>	1	
	<i>x</i> ≥ 15	1	
	y < 50	1	
	$x + y \leqslant 70$	1	
6(b)	Four correct ruled lines and correct region indicated	5	all lines ruled B1 for $y = x$ broken B1 for $x = 15$ B1 for $y = 50$ broken B1 for $x + y = 70$
6(c)	189	2	M1 for (21, 49) seen or for $2x + 3y$ written for a point (x, y) in <i>their</i> region where x and y are integers

10(a)	10.8 or 10.81 to 10.82	:	M2 for $\sqrt{(6-3)^2 + (-2-4)^2}$ oe or M1 for $(6-3)^2 + (-2-4)^2$ oe	
10(b)(i)	(6, 4)	:	2 B1 for	each
10(b)(ii)	2	:	M1 for	$\frac{12 - (-4)}{10 - 2}$ oe
10(b)(iii)	$y = -\frac{1}{2}x + 4$ oe final answer	:	M1 for	gradient = $-\frac{1}{2}$ or $-\frac{1}{their(\mathbf{b})(\mathbf{ii})}$ $\mathbf{b}(2, 3)$ substituted into their $y = mx + c$ or $\mathbf{b}(x - x_1)$ oe
5(a)(i)	(2n+m)(m-3) final answer		2	M1 for $m(2n+m)-3(2n+m)$ or $2n(m-3)+m(m-3)$
5(a)(ii)	(2y-9)(2y+9) final answer		1	
5(a)(iii)	(t-4)(t-2) final answer		2	B1 for $(t-4)(t-2)$ seen and spoiled or M1 for $t(t-2) - 4(t-2)$ or $t(t-4) - 2(t-4)$ or $(t+a)(t+b)$ where $a+b=-6$ or $ab=+8$
5(b)	$[x=]\frac{2m}{k+1}$		4	M1 for $xk = 2m - x$ or $k = \frac{2m}{x} - 1$ M1 for $xk + x = 2m$ or $k + 1 = \frac{2m}{x}$ M1 for $x(k+1) = 2m$

5(c)	correctly eliminating one variable	M1	
	[x =] 6	A1	
	[<i>y</i> =] –2	A1	If 0 scored SC1 for 2 values satisfying one of the original equations or SC1 if no working shown, but 2 correct answers given
5(d)(i)	3m-4(m+4)=6m(m+4)	M1	or $\frac{3m-4(m+4)}{m(m+4)}$ [= 6] oe
	$3m - 4m - 16 = 6m^2 + 24m$	M1	removes brackets correctly
	$6m^2 + 25m + 16 = 0$	A1	with no errors or omissions
5(d)(ii)	$\frac{-25 \pm \sqrt{(25)^2 - 4(6)(16)}}{2 \times 6}$ or $\frac{-25}{12} \pm \sqrt{\left(\frac{25}{12}\right)^2 - \frac{16}{6}}$	2	B1 for $\sqrt{(25)^2 - 4(6)(16)}$ or better or B1 for $\left(m + \frac{25}{12}\right)^2$ and if in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ B1 for $p = -25$ and $r = 2(6)$
	-0.79 and -3.38 final ans cao	2	SC1 for -0.8 and -3.4 or for -0.78 and -3.37 or -0.789 and -3.377 or 0.79 and 3.38 or -0.79 and -3.38 seen in working

7(a)	x = 0	1	
7(b)	Tangent ruled at $x = 0.5$	B1	No daylight between tangent and curve at point of contact
	−9 to −6.5	2	dep on ruled tangent or close attempt at tangent at $x = 0.5$
			M1 for rise/run also dep on tangent or close attempt at tangent at $x = 0.5$
7(c)(i)	0 2.4 or better 4	3	B1 for each
7(c)(ii)	Correct smooth curve	4	B3FT for 6 or 7 correct plots or B2 FT for 4 or 5 correct plots or B1 FT for 2 or 3 correct plots
			FT their table
7(d)	$x^3 + 3x + 4 = 10 - 8x^2$ and correctly completed	1	
7(e)	line $y = -2x + 2$ drawn and -0.45 to -0.35 nfww	3	B2 for ruled $y = -2x + 2$ or B1 for $-2x + 2$ seen or for line $y = -2x + c$ drawn or for $y = cx + 2$ $(c \neq 0)$ drawn and B1 for -0.45 to -0.35 nfww
4(a)(i)	243p ¹⁰ final answer	2	B1 for answer $243p^k$ or kp^{10} $(k \neq 0)$
4(a)(ii)	$9xy^4$ final answer	2	B1 for answer with two correct elements in correct form of expression
4(a)(iii)	$\frac{m^2}{25}$ final answer	1	
4(b)	10	4	B2 for $x = 8$ or for [length of rectangle =] 31 or M1 for $5x - 9 = 3x + 7$ oe or better M1 for $\frac{310}{(3 \times theirx + 7)}$ or $\frac{310}{(5 \times theirx - 9)}$ Alt method using simultaneous eqns M1 for $5xw - 9w = 310$ and $3xw + 7w = 310$ M1 for equating coefficients of xw
			M1 for subtraction to eliminate term in xw

6(a)	-2[.0], -0.2, 2.5	3	B1 for each
6(b)	Fully correct curve	5	B4 for correct curve, but branches joined
			or B3FT for 9 or 10 correct plots or B2FT for 7 or 8 correct plots or B1FT for 5 or 6 correct plots and B1 indep two separate branches not touching or cutting y-axis
6(c)(i)	Correct tangent and $3 \le \text{grad} \le 5$	3	B2 for close attempt at tangent to curve at $x = -2$ and answer in range OR B1 for ruled tangent at $x = -2$, no daylight at $x = -2$ and M1dep (dep on B1 or close attempt at tangent) [at $x = -2$] for $\frac{rise}{run}$
6(c)(ii)	[$y =$] their(c)(i) $x +$ their y -intercept final answer	2	Strict FT their y-intercept for their line M1 for $y = their(\mathbf{c})(\mathbf{i}) x + any value$ or 'c' oe seen or for $y = any value$ (non-zero) x or ' mx ' + their y-intercept seen oe
6(d)(i)	1.05 to 1.25	1	
6(d)(ii)	-2.3 to -2.2 -0.4 to -0.3 0.3 to 0.4	3	B1 for each After 0 scored B1 for $y = -4$ ruled
6(e)	[a =] 2 [b =] 24 [n =] 5	3	B2 for 2 correct or for $2x^5 + 24x^2 [-3 = 0]$ or B1 for 1 correct or for $\frac{2x^5 - 3 + 4(6x^2)}{6x^2} [= 0]$ oe If 0 scored SC1 for $2x^5$ seen in final line of algebra
8(a)(i)	1	2	M1 for $h(0)$ or for 2^{8-3x}
8(a)(ii)	8	2	M1 for g(½) or for $\frac{10}{2^x + 1}$

8(a)(iii)	$\frac{10-x}{x}$ or $\frac{10}{x}-1$ final answer		3	M2 for $x = \frac{10 - y}{y}$ or better or xy = 10 - x or better or $y + 1 = \frac{10}{x}$ or M1 for $x(y + 1) = 10$ or $y(x + 1) = 10$ or $x = \frac{10}{y+1}$ or $x + 1 = \frac{10}{y}$
8(a)(iv)	5		1	
8(b)	$\frac{-3x^2 + 5x + 18}{x + 1}$ final answer		3	M1 for $\frac{(8-3x)(x+1)+10}{x+1}$
				B1 for $-3x^2 - 3x + 8x + 8$ [+10]
2(a)(i)	1,, 16	2	B1 fo	r each
2(a)(ii)	14,, -2	2	B1 fo	r each
2(b)	Fully correct smooth curves	6	or B2 or B1 B3 fo or B2	r correct curve of $y = 2^x$ FT for 4 or 5 correct points FT for 2 or 3 correct points r correct curve of $y = 14 - x^2$ FT for 4 or 5 correct points FT for 2 or 3 correct points
2(c)(i)	3.5 to 3.7	1		
2(c)(ii)	2.65 to 2.8	1		
2(d)(i)	Correct line	1	Ruled	I, through (4, 2) and gradient -4
2(d)(ii)	Tangent (2, 10)	2	B1 fo	r each

5(a)	15.6[0]	4	B3 for $20900x = 326040$ or better
			or M2 for $18500x + 2400(x - 2.5[0]) = 320040$
			or M1 for $18500x$ or $2400(x-2.5[0])$
5(b)(i)	(y+12)(y-7) final answer	2	B1 for $(y+a)(y+b)$ where $ab = -84$
			or $a+b=5$ or $y(y+12)-7(y+12)$
			or $y(y-7) + 12(y-7)$
5(b)(ii)	38 cao	3	B2 for $y = 7$
			or M1 for $y(y+5) = 84$ oe
5(c)(i)	$\begin{vmatrix} 168(m-0.75) + 207m = 100m(m-0.75) \\ oe \end{vmatrix}$	M2	May be all over common denominator
			M1 for $\frac{168}{m}$ or $\frac{207}{m-0.75}$ used
	OR $207 = 100m - 168 - 75 + \frac{126}{3}$		
	207 - 100m - 108 - 73 + — m		
	at least one interim line leading to $50m^2 - 225m + 63 = 0$	A1	No errors or omissions
5(c)(ii)	(10m-3)(5m-21)	B2	M1 for $(10m + a)(5m + b)$ where $ab = 63$
			or $5a + 10b = -225$ or $10m(5m - 21) - 3(5m - 21)$ or $5m(10m - 3) - 21(10m - 3)$
	OR		OR
	$m = \frac{-(-225) \pm \sqrt{(-225)^2 - 4(50)(63)}}{2(50)} \text{ oe}$		M1 for $\sqrt{(-225)^2 - 4(50)(63)}$ or for $p = -(-225)$,
	2(50)		$r = 2(50)$ if in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$
	OR		OR r
	$m = \frac{225}{100} \pm \sqrt{\left(\frac{225}{100}\right)^2 - \frac{63}{50}}$ oe		M1 for $\left(m - \frac{225}{100}\right)^2$ oe

9(a)	y = -2x + 5 oe	3	B2 for $-2x + 5$ or M1 for gradient = $-1 \div \frac{1}{2}$ or better M1 for substituting (1, 3) into $y = (their \ m)x + c$ oe If 0 scored SC1 for (1, 3) satisfying their wrong equation $(c \ne 0)$ with gradient $\ne \frac{1}{2}$
9(b)(i)	$x \ge 2$ oe $y \le 5$ oe $y \ge \frac{1}{2}x$ oe	4	SC3 for $x > 2$ and $y < 5$ and $y > \frac{1}{2}x$ OR B1 for $x \ge 2$ B1 for $y \le 5$ B2 for $y \ge \frac{1}{2}x$ or M1 for $y \ge kx$ $(k > 0)$ OR SC2 for all three boundary lines identified but with incorrect sign(s) If 0 scored SC1 for one or two correct boundary lines with incorrect sign(s)
9(b)(ii)	(5, 4)	2	M1 for one trial of an integer point inside region or for $3x + 5y = 35$ drawn
10(a)(i)	26	2	M1 for g(5) or for $(x^2 + 1)^2 + 1$
10(a)(ii)	$x^2 + 4x + 5$	2	M1 for $(x+2)^2+1$
10(a)(iii)	5	2	M1 for $2x - 3 = 7$
10(a)(iv)	$\frac{x+3}{2}$ oe	2	M1 for $x = 2y - 3$ or $y + 3 = 2x$ or $\frac{y}{2} = x - \frac{3}{2}$ oe
10(b)(i)	[0].70 cao	2	B1 for [0].696 to [0].697
10(b)(ii)	4 cao	1	

3(a)	0 -2 0.9	3	B1 for each
3(b)	Correct curve	4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
3(c)	-0.45 to -0.35 1 2.35 to 2.45	3	FT their graph B1 for each in the correct position If zero scored, SC1FT for 3 correct values
3(d)(i)	y=1-x oe	2	B1 for $y = 1 - kx$ oe, $k \ne 0$ or $y = k - x$ oe or $1 - x$
3(d)(ii)	Correct ruled line and 2.25 to 2.4	3	B2FT dep for correct ruled line or B1 dep for line through $(0, 1)$ when extended but not $y = 1$ or with gradient -1.1 to -0.9 or correct line but freehand or SC2 for $y = x - 1$ ruled after answer [y =]x - 1 in (d)(i) and B1 for 2.25 to 2.4
3(e)	Correct tangent and 1.7 to 3.7	3	No daylight between tangent and curve at $x = -0.25$. Point of contact is the midpoint between two vertices of daylight and this point of contact must be between -0.35 and -0.15 B2 for close attempt at tangent at $x = -0.25$ and answer in range OR B1 for ruled tangent at $x = -0.25$, no daylight Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = -0.35$ and -0.15 and M1 dep on B1 or close attempt at tangent at $x = -0.25$ for $\frac{rise}{run}$
8(a)	(5, 6)	1	
8(b)	$[y=]-\frac{4}{5}x+3 \text{ nfww}$	3	B2 for $[y =] -\frac{4}{5}x + c$ nfww or M1 for $\frac{rise}{run}$ using any two of (-5, 7) (0, 3) and (5, -1) and B1 for $[y =]mx + 3$ $(m \neq 0)$

1	1		
8(c) $y = -\frac{4}{5}x - 2$	oe	2	FT their gradient from 8(b) B1 for $y = (their \text{ gradient})x + c \text{ (c not 0)}$ or for $y = mx - 2 \text{ (}m \neq 0 \text{)}$ or for $-\frac{4}{5}x - 2$ alone
			5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8(d)(i) $y = \frac{5}{4}x + 4$	pe	3	M1 for $-\frac{1}{their}$ gradient from 8(b) M1 for (8, 14) substituted into their $y = mx + c$ or $\frac{y - 14}{x - 8} = m$ or better
8(d)(ii) 8.54 or 8.544	·	3	M2 for $(14-their 6)^2 + (8-their 5)^2$ or better or M1 for $14-their 6$ and $8-their 5$ seen
8(d)(iii) (4, 6)		2	B1 for each
$9(a)(i) \qquad \frac{72}{m}$		1	
$9(a)(ii) \qquad \frac{72}{m+0.9}$		1	
9 (b) $\frac{72}{m} - \frac{72}{m+0.9}$	-= 4 oe	M1	FT their (a)(i) and (a)(ii) if expressions in m
72(m+0.9)	-72m = 4m(m+0.9) oe	M1	Dependent on M1 and correct fractions
[72 <i>m</i> – 72 <i>m</i>]	$+64.8 = 4m^2 + 3.6m$ oe	A1	
Correct comp $10m^2 + 9m -$	·	A1	
9(c)(i) 3.6 and -4.5	final answer	3	B2 for $(2m+9)(5m-18)$ or $\frac{-9 \pm \sqrt{(9)^2 - 4(10)(-162)}}{2 \times 10}$ or better or B1 for $(am+b)(cm+d)$ where ac = 10 and either $bd = -162$ or $ad+bc = 9$ or for $\sqrt{(9)^2 - 4(10)(-162)}$ or better or $\frac{-9 \pm \sqrt{q}}{2(10)}$ or better
9(c)(ii) 20		1	

11(a)	$5(m-2p^2)(m+2p^2)$ final answer	3	M2 for $(5m+k)(m+j)$ where $kj = -20p^4$ or $5j+k=0$ or M1 for $5(m^2-4p^4)$ seen
11(b)	$[P =] \frac{100A}{100 + TR} $ final answer	3	or for $A = P(1 + \frac{RT}{100})$ M1 for $100A = P(100 + RT)$ or for $\frac{A}{1 + \frac{RT}{100}} = P$ or for $100A = P(1 + RT)$ after $100A = P + PRT$ as first step
2(a)	-1.5		M1 for $30 + 2x = 9 - 12x$ or $10 + \frac{2}{3}x = 3 - 4x$ M1 for collecting <i>their</i> terms correctly to reach $ax = b$
2(b)	$6ab^2(2b+3a^2)$ final answer	2	M1 for any correct partial factorisation seen or for correct answer seen
2(c)(i)	$10a^5c^9$ final answer	2	B1 for final answer with $10a^kc^9$ or $10a^5c^k$ or ka^5c^9
2(c)(ii)	$\frac{8a^6}{c^9}$ or $8a^6c^{-9}$ final answer		B1 for final answer with $\frac{8a^6}{c^k}$ or $\frac{8a^k}{c^9}$ or $\frac{ka^6}{c^9}$ $[k \neq 0]$ or for correct answer seen
2(d)	0.5 or $\frac{1}{2}$	3	M1 for $y = \frac{k}{(x+2)^2}$ oe B1 for $k = 50$ or M2 for $2(3+2)^2 = y(8+2)^2$ oe
2(e)	$\frac{7x-x^2}{2(x-2)}$ or $\frac{7x-x^2}{2x-4}$ oe final answer		M1 for $5 \times 2 - (x - 5)(x - 2)$ oe seen M1 for common denominator $2(x - 2)$ oe isw

5(a)	-3, 17		2	B1 for each
5(b)	Fully correct curve		4	B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points
5(c)(i)	Correct ruled tangent for <i>their</i> curve through $(0, -17)$	e	1	
5(c)(ii)	(1.7 to 2.2, -1 to 2.5)		1	
5(c)(iii)	[y =] 9x - 17 final answer		3	M2dep for answer $[y =] 9x[+] - c$
				OR M1dep for gradient = $\frac{rise}{run}$ for their tangent at any point B1 for answer $[y =]kx[+] - 17 (k \neq 0)$
5(d)	$y = 3x + 2$ ruled correctly and $-2.2 \dots$ to -2.1 -0.6 to -0.4 2.6 to 2.8		4	B2 for $y = 3x + 2$ ruled or B1 for $[y =] 3x + 2$ soi or $y = 3x + k$ ruled or $y = kx + 2$ but not $y = 2$ B2 for all 3 values or B1 for 2 values
6(a)	0.6		1	
6(b)	50.7		3	M2 for $1.2 \times 19 + \frac{1}{2}(19 + 12) \times 1.8$ oe or M1 for method for finding any relevant
				area
6(c)	17.9		3	M2 for <i>their</i> $50.7 - 1.2 \times 19$ [- 10] oe or M1 for 1.2×19 oe seen isw
4(a)	-1, 3	2	B 1	for each

4(b)	Correct graph	3	B2FT for 6 or 7 correct points or B1FT for 4 or 5 correct points
4(c)	Correct ruled tangent and $-2 \le \text{gradient} \le -1.5$	3	B2 for close attempt at tangent at $x = -4$ and answer in range
			OR
			B1 for ruled tangent at $x = -4$ with no daylight
			and M1 for rise/run also dep on close attempt at tangent. Must see correct or implied calculation from a drawn tangent.
4(d)	-3, 3	1	
4(e)	Correct graph	4	B3FT for 7 or 8 correct points or B2FT for 5 or 6 correct points or B1FT for 3 or 4 correct points
4(f)(i)	3.6 to 3.85	1	
4(f)(ii)	x > their (f)(i)	1	FT
4(g)	$\frac{x^2}{4} = \frac{9}{x} + \frac{4}{x} \text{ or } \frac{x^3}{4} - 4 = 9$	M1	Allow $\frac{13}{x}$ for $\frac{9}{x} + \frac{4}{x}$
	52	A1	
9(a)	0	1	
9(b)	5	2	M1 for $3(3^x)+4$ or better or $f(\frac{1}{3})$ or $f(3^{-1})$
9(c)	$\frac{x+1}{2}$ oe final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or $\frac{y}{2} = x - \frac{1}{2}$ or better
9(d)	9 <i>x</i> + 16	2	M1 for $3(3x+4)+4$ oe
9(e)	$9x^2 + 24x + 16$	2	B1 for three terms from $9x^2 + 12x + 12x + 16$ correct
9(f)	27	2	M1 for $x = h(their g(2))$

$\overline{}$		1		+
3	(a)	0 0.5 oe 1.25 oe	1, 1, 1	
	(b)	Fully correct smooth curve	4	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points
	(c)	3.6 to 3.8	2	M1 for $y = 3.5$ soi
	(d)	line $y = x + 1$ ruled	M1	
		-1.55 to -1.40 4.55 to 4.8	A1 A1	If 0 scored SC1 for $y = x + 1$ stated or implied or for 2 correct values given
	(e) (i)	Point plotted at (5, 5)	1	
	(ii)	Tangent ruled from A	1	
	(iii)	1.2 to 1.4	В2	B2 and M1 dep on reasonable attempt at tangent from (5, 5)
				M1 for change in y/ change in x of their ruled line
5	(a) (i)	(3x-1)(x+4)	2	M1 for $(3x+b)(x+c)$ with $bc = -4$ or $3c+b=11$ or for $3x(x+4)-1(x+4)$ or for $x(3x-1)+4(3x-1)$
	(ii)	$\frac{1}{3}$ oe and -4	1	
	(b) (i)	$2 \times 2(x-4) - 2(2x+11) = (2x+11)(x-4)$ or better	M2	M1 for common denom $2(2x+11)(x-4)$ seen or attempt to multiply through by denoms or for $\frac{2(x-4)-(2x+11)}{(2x+11)(x-4)} \left[= \frac{1}{2} \right]$
		$2x^2 + 11x - 8x - 44$ or better	B1	or for other correct relevant 2 bracket expansion if alt method used
		$4x-16-4x-22=2x^2-8x+11x-44$ $2x^2+3x-6=0$	A1	correct solution reached with all brackets expanded and no errors or omissions seen
	(ii)	$\frac{-3\pm\sqrt{(3)^2-4(2)(-6)}}{2\times2}$	2	B1 for $\sqrt{(3)^2 - 4(2)(-6)}$ or better or $\left(x + \frac{3}{4}\right)^2$ oe
				or $\left(\frac{x+\frac{1}{4}}{4}\right)$ oe and B1 for $\frac{-3+\sqrt{q}}{2(2)}$ or $\frac{-3-\sqrt{q}}{2(2)}$ or better or $-\frac{3}{4}+\sqrt{\frac{57}{16}}$ oe or $-\frac{3}{4}-\sqrt{\frac{57}{16}}$ oe
		-2.64 and 1.14 final ans cao	B1B1	SC1 for -2.6 or -2.637 and 1.1 or 1.137 or -2.64 and 1.14 seen in working or 2.64 and -1.14 as final answers

9(a) $x < 10$ oe1 $Accept x \le 9$ $y \ge 2$ oe1 $Accept y > 1$ (b) $x + 3y \le 21$ oe1Mark answer line isw(c)ruled broken line $x = 10$ B1or ruled line $x = 9$ ruled line $y = 2$ B1or ruled broken line $y = 1$ ruled line from $(0, 7)$ to $(21, 0)$ B2SC1 for line with negative grade correct only at $(0, 7)$ or $(21, 0)$ correct region indicated cao1	
(b) $x+3y \le 21$ oe1Mark answer line isw(c)ruled broken line $x = 10$ B1or ruled line $x = 9$ ruled line $y = 2$ B1or ruled broken line $y = 1$ ruled line from $(0, 7)$ to $(21, 0)$ B2SC1 for line with negative grad correct only at $(0, 7)$ or $(21, 0)$	
ruled broken line $x = 10$ ruled line $y = 2$ ruled line from $(0, 7)$ to $(21, 0)$ B1 or ruled line $x = 9$ or ruled broken line $y = 1$ B2 SC1 for line with negative grace correct only at $(0, 7)$ or $(21, 0)$	
ruled line $y = 2$ ruled line from $(0, 7)$ to $(21, 0)$ B1 or ruled broken line $y = 1$ SC1 for line with negative grac correct only at $(0, 7)$ or $(21, 0)$	
ruled line from (0, 7) to (21, 0) B2 SC1 for line with negative grad correct only at (0, 7) or (21, 0)	
correct only at (0, 7) or (21, 0)	
correct region indicated cao	
T T T T T T T T T T T T T T T T T T T	
(d) (i) 4	
(ii) 20 1	
11 (a) 4 5 6 7 1	
8 16 32 64 128 3 B2 for 3 or 4 correct	
or B1 for first 2 correct If 0 scored, SC1 for 4 values condubled FT one error	orrectly
(b) 2^n oe 1	
(c) (i) $2+4+8=14$	
$16-2=14 0 or for 14+2=16=2^4$	
(ii) 62 and 6 B1 for each	
(iii) $2^{n+1}-2$ oe 1	
(iv) 9 1	
4(a) -1.6 to -1.4	
4(b) -0.5 1	
4(c) $k > -4$ 2 B1 for identifying the -4 or for horizontal line drawn $y = -4$	=-4
4(d) $y = x - 5$ ruled and -2.3 to -2.1 -1.2 to -1.1 1.3 to 1.4 B2 for correct line and 2 correct no line and 3 correct values or B1 for no line and 2 correct vor B1 for correct line	
4(e) Tangent ruled at $x = 1$ B1 No daylight at point of contact. In point of contact as midpoint between $x = 0.8$ and 1.2	ween two
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	at $x=1$

6(a)(i)	-7x + 55 final answer	2	M1 for $8x + 20$ or $-15x + 35$ or answer $-7x + k$ or $kx + 55$
6(a)(ii)	$x^2 - 14x + 49$ final answer	2	M1 for 3 of $x^2 - 7x - 7x + 49$
6(b)(i)	-18	3	 M1 for a correct first step ie correctly multiplying by 3 or correctly dividing by 2 or for correctly subtracting 5 M1 for correctly reaching ax = b from their first step
6(b)(ii)	15	3	M2 for $6x - 4x = 21 + 9$ oe or M1 for $6x - 21$ or correct division by 3 or for correctly reaching $ax = b$ from <i>their</i> first step
6(b)(iii)	5 and -5	3	B2 for 5 or -5 or M1 for $[x^2 =] (74 + 1) \div 3$ or better
7(a)	(-0.5, 3)	2	B1 for one correct value
7(b)	[y =] -2x + 2 final answer	3	M1 for $\frac{-2-8}{23}$ or better M1 for substitution of (-3, 8) or (2, -2) or <i>their</i> midpoint into $y = mx + c$ with <i>their m</i>
7(c)	y = -2x + 7 oe	2FT	FT their (b) M1 for $y = (their-2)x + k (k \neq 2)$ or $y = kx + 7 (k \neq 0)$ If zero scored, SC1 for $(their-2)x+7$
7(d)	x - 2y + 9 = 0 or $2y - x - 9 = 0$ oe	4	B3 for any correct equivalent in wrong form Or M2 for $y = \frac{1}{2}x + k$ oe (FT negative reciprocal of <i>their</i> gradient in (b)) or M1 for grad = $\frac{1}{2}$ (FT negative reciprocal of <i>their</i> gradient in (b)) M1 for substitution of (1, 5) into $y = mx + c$ oe with <i>their</i> m

8(b)(ii) $\frac{-(-25) \pm \sqrt{(-25)^2 - 4(1)(-2200)}}{2(11)} \text{ or } \frac{-(-25) \pm \sqrt{(-25)^2 - 4(1)(-2200)}}{2(11)} \text{ or } \frac{-(-25) \pm \sqrt{q}}{2(1)} \text{ or } -(-25) $	$-\sqrt{q}$ 0 0 0 0 0
or both or for $\frac{25}{2}$ +or $-\sqrt{\left(\frac{25}{2}\right)^2}$ + 2200 $-36.04 \text{ and } 61.04 \text{ final answer}$ B1,B1 If B0B0, SC1 for values in ranges -36.042 to -36.041 and 61.041 to seen or for answers $-36[.0]$ or -36.042 to -36.041 and $61[.0]$ or 61.041 to 61 or -36.04 and 61.04 seen in working or for -61.04 and 36.04 as final and -1.75 to -1.7	51.042 o .042
-36.042 to -36.041 and 61.041 to seen or for answers -36[.0] or -36.042 t -36.041 and 61[.0] or 61.041 to 61 or -36.04 and 61.04 seen in working or for -61.04 and 36.04 as final and and -1.75 to -1.7	o .042
1.7 to 1.75	
4(b)(i) Correct ruled solid tangent at (-1.5, 3.5)	
4(b)(ii) -7 to -5 dep on close attempt at ruled solid tangent at $x = -$ part (b)(i) M1 for rise/run dep on close attempt at ruled solid at $x = -1.5$	
4(c)(i) 1 1	
4(c)(ii) Correct curve 3 B2 for 4 or 5 correct points or B1 for 2 or 3 correct points	
4(d)(i) -0.95 to -0.8	
1.1 to 1.45	
4(d)(ii) $their (-0.95 \text{ to } -0.8) < x < their (1.1 \text{ to } 1.45) \text{ oe}$ 1FT correct or FT their (d)(i)	
4(e)(i) 0.125 oe and 0.03125 oe and 0.000977 oe 1	
4(e)(ii) 0 1 accept zero, nought, etc	

7(a)(i)	4.5 or $4\frac{1}{2}$ or $\frac{9}{2}$ final answer	3	M2 for $[2](4x + 7) = [2](6x - 2)$ oe or M1 for $2(2x + 6) + 2(2x + 1)$ oe or $4(3x - 1)$ oe or M1 for correctly reaching $ax = b$ from <i>their</i> linear equation
7(a)(ii)	$(2x+6)(2x+1) = (3x-1)^2$	M1	May be seen in different stages
	$5x^2 - 20x - 5 = 0$ oe	В3	B1 for $4x^2 + 2x + 12x + 6$ or better B1 for $9x^2 - 3x - 3x + 1$ or better
	$\frac{-(-20) \pm \sqrt{(-20)^2 - 4(5)(-5)}}{2(5)}$ oe	M2	FT their 3 term quadratic provided formula used or complete the square M1 for $\sqrt{(-20)^2 - 4(5)(-5)}$ oe or if in form $\frac{-(-20) + \sqrt{q}}{2(5)}$ or $\frac{-(-20) - \sqrt{q}}{2(5)}$ FT± their quadratic or for completing the square M2 for $2 \pm \sqrt{1 + 2^2}$ or M1 for $(x - 2)^2$
	4.24 or 4.236 cao	B1	
7(b)(i)	(x+5)(x-1) final answer	2	B1 for $x(x-1) + 5(x-1)$ or $x(x+5) - [1](x+5)$ or for $(x+a)(x+b)$ where $ab = -5$ or $a+b=4$
7(b)(ii)	5(x+1) - 8x = x(x+1) or $5x + 5 - 8x = x^2 + x$	M2	Could be seen in different stages M1 for $5(x+1) - 8x$ seen or for common denominator of $x(x+1)$ for LHS or both sides soi
	-5 and 1 cao	A2	A1 for $x^2 + 4x - 5 = 0$ oe
9(a)(i)	100	1	
9(a)(ii)	92.3 or 92.29 to 92.31	3	M2 for $200 \div (2 + \frac{10}{60})$ oe or M1 for $200 \div their$ time interval or M1 for $\frac{10}{60}$ soi oe
9(b)(i)	240 nfww	3	M2 for $\frac{V}{2} \left(\frac{30}{60} + \frac{20}{60} \right) = 100$ oe or M1 for any correct relevant area seen in terms of V
9(b)(ii)	$\frac{2}{9}$ oe	2FT	FT for their (b)(i) ÷ 1080 to 3 sf or better M1 for their (b)(i) × $\frac{1000}{3600}$ soi

10(a)	-11	1				
10(b)	7	2	M1 for $3x - 2$	= 19 or better		
10(c)	25	2	M1 for $3 \times 3^x - 2$ oe			
10(d)	$9x^2 - 8x + 2$ final answer	3	3 M1 for $(3x-2)^2 + 3x - 2 + x$ oe			
			B1 for $\left[(3x-2)^2 = \right] 9x^2 - 6x - 6x + 4$ oe			
10(e)	$\frac{x+2}{3}$ oe final answer	2	M1 for $x = 3y - 2$ or $y + 2 = 3x$ or $\frac{y}{3} = x - \frac{2}{3}$ or better			
3(a)	0 2.25 2 1.25		4	B1 for each		
3(b)	Fully correct smooth curve		4	B3 FT for 7 or 8 points		
				or B2 FT for 5 or 6 points		
				or B1 FT for 3 or 4 points		
3(c)	1		1			
	_		1			
3(d)(i)	[y=]x+1		1			
3(d)(ii)	−2.2 to −2.1		1			
	-0.45 to -0.4		1			
	0.51 to 0.6		1	If zero scored, SC1 for their line in (d)(i) drawn. It must be of the form $y = mx + c$ ($m \ne 0$) and drawn 'fit for purpose'		
3(e)	-1.33 < k < 0 to 0.1		2FT	FT Strict ft of their max point and min point dep on cubic graph or accept correct answer from calculus B1 for each If zero scored, SC1 for two correct values reversed		

7(a)	[x=]-5		4	M1 for correctly equating one set of coefficients
	[y=] 7 with correct working			M1 for correct method to eliminate one variable
				OR
				M1 for correctly rearranging one equation
				M1 for correct method to eliminate one variable
				A1 $x = -5$ A1 $y = 7$ both dep on M2
				If zero scored, SC1 for 2 values satisfying one of the original equations
				SC1 if no correct working shown, but 2 correct answers given
7(b)	[a =] 36 [b =] -6		3	B2 for either correct or M1 for $a = b^2$ or for $x^2 + bx + bx + b^2$ or better or for $(x - 6)^2$ seen and M1 for $2b = -12$ soi
7(c)	$\frac{7x^2 - 12x - 10}{(2x - 5)(x - 1)}$ oe final answer nfww		4	B1 for common denom $(2x-5)(x-1)$ seen oe isw M1 for $x(x-1)+(3x+2)(2x-5)$ soi isw B1 for $6x^2-15x+4x-10$ soi
	·	· !		
3(a)	$-2.75 \text{ or } -2\frac{3}{4}$	2	M	1 for $11x - 3x = -7 - 15$ or better
3(b)(i)	(x+11)(x-2) final answer	2		1 for $(x + a)(x + b)$ where $ab = -22$ a + b = 9
3(b)(ii)	−11 and 2 final answer	1		
3(c)	$[x] = \frac{2a}{2-y}$ or $\frac{-2a}{y-2}$ nfww final answer	4		1 for clearing the x term in the denominator 1 for correctly removing the bracket (expand divide by 2) 1 for factorising to obtain single x term 1 for their factor and division correct answer scores 3 out of 4 maximum
3(d)	$\frac{x}{x+6}$ nfww final answer	3		1 for $x(x-6)$ 1 for $(x+6)(x-6)$

4(a)	10, 7	2	B1 for each value
4(b)	Correct curve	4	B3 FT for 10 or 11 correct points B2 FT for 8 or 9 correct points B1 FT for 6 or 7 correct points
			FT their table
4(c)	−1.7 to −1.55	1	FT their graph if one answer
4(d)	Tangent ruled at $x = 3.5$	B1	No daylight between tangent and curve at point of contact
	6.5 to 11	B2	dep on tangent drawn or close attempt at tangent at $x = 3.5$ M1 for rise/run also dep on tangent or close attempt at $x = 3.5$
4(e)	line $y = 2x + 10$ ruled AND -1.3 to -1.1 1 4.1 to 4.25	4	B3 for correct line (could be short) and 1 correct value or B2 for correct line (could be short) or B1 for $[y =]2x + 10$ seen If zero scored, SC1 for no/wrong line and 3
			correct values
7(a)	-7	1	
7(b)	$\frac{4}{64}$ or better	2	M1 for $g(4^3)$ soi or $\frac{4}{4^x}$ or better
7(c)	$\frac{3-x}{2}$ oe final answer	2	M1 for $x = 3 - 2y$ or $2x = 3 - y$ or $\frac{y}{2} = \frac{3}{2} - x$ or $\frac{y-3}{-2}$ oe as final answer
7(d)	4^{3-2x}	M1	
	Correctly interprets the indices	M1	Dep on previous M1 e.g. $4^{3} \times 4^{-2x}$ or $4^{3} \times \frac{1}{4^{2x}}$ or $\frac{4^{3}}{4^{2x}}$
	$\frac{64}{16^x}$ nfww	A1	Correct completion with no errors
7(e)	1.5	2	B1 for $4^x = 8$ or better

10(a)	$12.5^2 = x^2 + 8.5^2 - 2 \times x \times 8.5\cos 60 \text{ o}$	oe isw		M2	M1 for $\cos 60 = \frac{x^2 + 8.5^2 - 12.5^2}{2 \times x \times 8.5}$
	$156.25 = x^2 + 72.25 - 8.5x$	$25 = x^2 + 72.25 - 8.5x$		A1	or better
	$2x^2 - 17x - 168 = 0$			A1	with no errors or omissions
10(b)	$\frac{[]17 \pm \sqrt{([-]17)^2 - 4(2)(-168)}}{2 \times 2}$			2	B1 for $\sqrt{([-]17)^2 - 4(2)(-168)}$ or better seen and if in form $\frac{p + or - \sqrt{q}}{r}$ B1 for $p = []17$ and $r = 2 \times 2$
	14.35, –5.85 final answers			1, 1	SC1 for 14.352 to 14.353 and -5.853 to -5.852 seen or 14.3 or 14.4 and -5.8 or -5.9 as final answers or -14.35 and 5.85 as final answers or 14.35 and -5.85 seen in working
10(c)	12.2 or 12.17 nfww			3	M2 for $\frac{their 14.35 \times \sin 46}{\sin 58}$ or M1 for $\frac{\sin 46}{CD} = \frac{\sin 58}{their 14.35}$
5(a)	3.2 or 3.15 or 3.152 to 3.153 5.2 or 5.19 or 5.20 or 5.196		2	B1 f	for each
5(b)	Correct graph for $0.5 \le x \le 3.5$		4	or B	T for 6 or 7 correct points 2FT for 4 or 5 correct points 2FT for 2 or 3 correct points
5(c)	1.7 to 1.8	1	1FT	FT	their graph if one answer
5(d)(i)	Any integer $k \geqslant -1$		1		
5(d)(ii)	Any integer $k < -1$	1			
5(e)	Tangent ruled at $x = -3$]			
	2.5 to 4		B2	tang M1	on tangent drawn at $x = -3$ or close attempt at gent at $x = -3$ for rise/run also dep on tangent at $x = -3$ or close attempt at tangent at $x = -3$

5(f)(i)	y = 6 - x ruled accurately	M2	M1 for correct line but freehand or ruled line gradient -1.1 to -0.9 , or through $(0, 6)$ but not $y = 6$
	$2.85 \leqslant x \leqslant 3$	A1	
5(f)(ii)	[a =] 8 [b =] -48 [c =] -16	4	B3 for 2 correct or $x^5 + 8x^3 - 48x^2 - 16 = 0$ seen or $-x^5 - 8x^3 + 48x^2 + 16 = 0$ seen or M2 for correct multiplication by $8x^2$ or B1 for answers $\pm 8, \pm 48, \pm 16$ or M1 for $\frac{x^2 \times x^3 - 8 \times 2}{x^2 \times 8} = 6 - x$ or M1 for correct multiplication by 8 or M1 for correct multiplication by x^2
8(a)(i)	7a + 9p = 354 oe final answer	1	
8(a)(ii)	[a =] 21 [p =] 23	3	M1 for correctly eliminating one variable A1 for $a = 21$ A1 for $p = 23$
8(b)(i)	$\frac{2}{x}$	1	
8(b)(ii)(a)	$\frac{2}{x} + \frac{3}{x-1} = 2$	M1	
	2(x-1)+3x=2x(x-1) oe	M1dep	Both sides of the equation could be over $x(x-1)$ at this stage Dep on M1 or 3 term equation with fractions but one sign error
	$2x-2+3x = 2x^2 - 2x \text{ oe} $ $2x^2 - 7x + 2 = 0$	A1	Answer reached with one correctly expanded line seen and no errors seen
8(b)(ii)(b)	$\sqrt{(-7)^2 - 4(2)(2)}$	В1	or for $\left(x-\frac{7}{4}\right)^2$
	$\frac{-7+\sqrt{q}}{2\times 2} \text{ or } \frac{-7-\sqrt{q}}{2\times 2}$	B1	or for $\frac{7}{4} + \text{or} - \sqrt{-1 + \left(\frac{7}{4}\right)^2}$
	3.19 only	B2	B1 for 3.19 with other root or for 3.2 or 3.186 isw other root or for 0.31 or 0.314 or 0.3138 to 0.3139

9(a)	3	1		
9(b)	$-\frac{2}{5}$ oe	2		11 for 2(1-2x) = x+4
9(c)	-2x-7 final answer	2	M	11 for $1 - 2(x + 4)$
9(d)	26	2		1 for h(5) soi M1 for $(x^2 + 1)^2 + 1$
9(e)	$\frac{1-x}{2}$ oe final answer	2	l	11 for $x = 1 - 2y$ or $2x = 1 - y$ or $\frac{1}{2} - x$ or $y - 1 = -2x$
9(f)	[p =] - 20 [q =] 26	4		3 for $[hgf(x)] = 4x^2 - 20x + 26$ seen and not will by further working 11 for $(1 - 2x) + 4$ 11 dep for $(their (5 - 2x))^2 + 1$ 1FT dep for $(5 - 10x - 10x + 4x^2)$
2(a)	343		1	
2(b)(i)	1		1	
2(b)(ii)	x ¹⁰ final answer		1	
2(b)(iii)	$9x^{16}$ final answer		2	B1 for x^{12} or x^{16} or $(3x^8)^2$ seen
2(c)(i)	2(x-3)(x+3) final answer		2	M1 for $(2x+6)(x-3)$ or $(2x-6)(x+3)$ or $(x-3)(x+3)$
2(c)(ii)	$\frac{2(x+3)}{x+10} \text{ or } \frac{2x+6}{x+10}$ final answer nfww		3	M2 for $(x + 10)(x - 3)$ or M1 for $(x + a)(x + b)$ where $ab = -30$ or $a + b = 7$

7(a)	9, -6, 9	3	B1 for each
7(b)	Correct graph	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
7(c)	−3.5 to −3.35 and 0.8 to 0.9	2FT	FT their graph B1FT for either
7(d)	$a = \frac{5}{4} \text{ or } 1\frac{1}{4} \text{ or } 1.25$ $b = -\frac{49}{8} \text{ or } -6\frac{1}{8} \text{ or } -6.125$	3	B2 for either correct or M1 for $[2]\left(x + \frac{5}{4}\right)^2$ seen isw or for $2x^2 + 4ax + 2a^2 + b$
8(a)(i)	5	1	
8(a)(ii)	$-\frac{3}{2}$ oe	1	
8(b)	$\left(\frac{4}{5},\ 0\right)$ oe	2	M1 for $5x - 4 = 0$ soi
8(c)	y = -0.2x + 11 final answer	4	M2 for $y = -0.2x + c$ oe (any form) FT their (a) or B1FT for grad = $\frac{-1}{their}$ (a)(i) soi and M1 for substitution of (10, 9) into their equation
8(d)	(2, 6)	3	M1 for elimination of one variable A1 for $x = 2$ or $y = 6$
8(e)	13	3	M2 for (4 + 9) × their 2 ÷ 2 oe or B1 for 9 oe or 4 or -4 seen

			·
9(a)	$\frac{10}{x-0.5}$ oe final answer	1	Accept $\frac{20}{2x-1}$
9(b)(i)	$\frac{10}{x - 0.5} - \frac{10}{x} = 0.25 \text{ oe}$	M1	FT their (a)
	10x - 10(x - 0.5) = 0.25x (x - 0.5) oe	M1	Clears algebraic denominators or collects as a single fraction FT <i>their</i> algebraic fractions dep on two fractions with algebraic denominators
	$10x - 10x + 5 = 0.25x^2 - 0.125x $ or better	B1	Expands brackets
	$2x^2 - x - 40 = 0$	A1	Dep on M1M1B1 and no errors seen
9(b)(ii)	$\frac{1 \pm \sqrt{(-1)^2 - 4 \times 2 \times -40}}{2 \times 2} \text{ oe}$	В2	B1 for $\sqrt{(-1)^2 - 4(2)(-40)}$ or better or B1 for $\frac{-1 + \sqrt{q}}{2 \times 2}$ or $\frac{-1 - \sqrt{q}}{2 \times 2}$ or both
	-4.23 and 4.73 final answers	B1 B1	SC1 for -4.229 and 4.729 or for -4.23 and 4.73 seen in working or for -4.73 and 4.23 as final answer or for -4.2 or -4.22 and 4.7 or 4.72 as final answer
9(b)(iii)	2 [hours] 7 [minutes]	3	B2 for 2.11 or 2.114 to 2.115 or 126.8 to 126.9 or 127 or M1 for 10 ÷ <i>their</i> positive root from (b)(ii)
7 (a)	2.5[0] 1.04 2.11	3	B1 for each
7 (a) (b)	3.5[0] 1.94 3.11 Fully correct curve	5	B1 for each B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points
			B1 indep two separate branches not touching or cutting <i>y</i> -axis
			SC4 for correct curve, but branches joined
(c)	-0.7 to -0.6	1	

	(d) (i)	-1 2.5	1 1	If 0,0, M1 for $y = 2.5 - x$ oe seen in working
	(ii)	-0.6 to -0.5 with correct ruled line	3	B2FT for drawing <i>their</i> ruled line from (d)(i)
				or M1 for ruled line through (0, 2.5)FT or gradient -1 FT
	(e)	Correct tangent and 0.5 ≤ grad ≤ 0.85	3	B2 for close attempt at tangent at $x = 2$ and answer in range OR B1 for ruled tangent at $x = 2$, no daylight at $x = 2$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 1.8$ and 2.2 and M1 (dep on B1 or close attempt at tangent
				[at any point] for $\frac{rise}{run}$
8	(a)	15 nfww	3	M1 for $y = k\sqrt{(x+2)}$ oe
				$\mathbf{A1} \text{ for } k = 3$
	(b)	$\frac{x+6}{x-2}$ nfww final answer	5	B2 for $(x+6)^2$ oe or SC1 for $(x+a)(x+b)$ where $ab = 36$ or a+b = 12 or $x(x+6) + 6(x+6)$
				B2 for $(x-2)(x+6)$ or SC1 for $(x+a)(x+b)$ where $ab = -12$ or $a+b=4$ or $x(x+6)-2(x+6)$ or $x(x-2)+6(x-2)$
	(c)	$\frac{X}{W^2 + 1}$ nfww final answer	5	M1 for $W^2 = \frac{X-a}{a}$ or $W\sqrt{a} = \sqrt{X-a}$ M1 for next productive step
				M1 for 2nd productive step
				M1 for 3rd productive step
				M1 for final step leading to $a =$
	(d)	$\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{(x-1)(x+1)}$	5	M1 for common denominator $(x-1)(x+1)$ isw
		final answer		M1 for $(x-2)(x-1)-(x+3)(x+1)$
				B2 for $x^2 - 2x - x + 2 - (x^2 + 3x + x + 3)$ oe or B1 for either expansion

				-
11	(a) (i)	11	1	
	(ii)	14x + 3 final answer	1	
	(b)	17-21x final answer	2 M1 f	for $7(2-3x)+3$ oe
	(c)	$-\frac{1}{9}$		for $3(2-3x) = 7$ oe for correct first step
	(d)	-1.3		for $2-3(x+4)-(7x+3)=0$ for $-10x-13=0$ oe
				cored, SC1 for answer -0.7 oe after $(x+4)-7x+3=0$ shown previously
5	(a)	9 10.5	1 1	
	(b)	Fully correct curve	5	SC4 for correct curve, but branches joined
				B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted
				and B1 for two separate branches not touching or cutting <i>y</i> -axis
	(c)	2.1 to 2.6	1	
		8.5 to 9	1	
	(d)	2, 3, 5, 7	2	SC1 for correct 4 values and no more than one extra positive integer or ±2, ±3, ±5, ±7 or 3 correct values and no extras
	(e)	(-2, -12)	1	
	(f) (i)	$20 + x^2 = x^3$	M1	Multiplication by x
		$x^3 - x^2 - 20 = 0$	A1	No errors or omissions
	(ii)	Fully correct curve $y = x^2$	2	SC1 for U – shaped parabola, vertex at origin
	(iii)	2.5 to 3.5	1	

FT dep on (iii) > 0

1FT

(iv)

3.[0] to 3.1 or FT their answer to (iii)

			†
6 (a) (i)	$[y=] \frac{1}{2}(80-2x)$	M1	40-x is enough
	$A = their \frac{1}{2} (80 - 2x) \times x \text{ oe}$	M1	
	$A = 40x - x^2$ and $x^2 - 40x + A = 0$	A1	No errors or omissions
(ii)	(x-30)(x-10)	В2	B1 for $x(x-30)-10(x-30)$ [= 0] or $x(x-10)-30(x-10)$ [= 0] or SC1 for $(x+a)(x+b)$ where $ab = 300$ or $a+b=-40$
	30, 10	B1	
(iii)	$\sqrt{(-40)^2 - 4(1)(200)}$ or better	В1	or for $(x-20)^2$
	p = -40 and $r = 2(1)$	В1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $20 \pm \sqrt{200}$
	5.86 34.14	B1 B1	If B0, SC1 for 5.9 or 5.857 to 5.858 and 34.1 or 34.14 or 5.86 and 34.14 seen in working
(b) (i)	$\frac{200}{x} - \frac{200}{x+10}$	M2	or -5.86 and -34.14 as final answers or M1 for $\frac{200}{x}$ or $\frac{200}{x+10}$ soi
	$\frac{200(x+10)-200x}{x(x+10)} = \frac{2000}{x(x+10)}$	A1	No errors or omissions
(ii)	16 [min] 40 [s]	3	B2 for 0.27 or 0.278 or 0.2777 to 0.2778 or $\frac{5}{18}$ [h] oe
			or 16.6 or 16.7 or 16.66 to 16.67 or $\frac{50}{3}$ [min]
			or M1 for $2000 \div 80(80+10)$ or $\frac{200}{80} - \frac{200}{90}$

	(.)		•	N/1 C - O - 1 - 1 - 4
8	(a)	2	2	M1 for $2x + 1 = 1 + 4$
	(b)	17	2	B1 for $[h(3) =] 8 \text{ soi or } 2 \times 2^x + 1 \text{ oe}$
	(c)	$\frac{x-1}{2}$ oe final answer	2	M1 for $y-1=2x$ or $\frac{y}{2}=x+\frac{1}{2}$
		2		or $x = 2y + 1$
	(d)	$4x^2 + 4x + 5$ final answer	3	M1 for $(2x+1)^2+4$
				and B1 for $[(2x+1)^2 =] 4x^2 + 2x + 2x + 1$ or better
	(e)	$\sqrt{2}$ or 1.41 or 1.414	1	
	(f)	-1	1	
9	(a) (i)	$-\frac{1}{2}x+2$ oe	3	SC2 for $y = -\frac{1}{2}x + c$ oe
				or SC1 for $y = kx + 2$ oe, $k \neq 0$
				or2
				M1 for [gradient =] $\frac{-2}{4}$
				and M1 for substituting $(4, 0)$ or $(0, 2)$ into $y = (their m)x + c$
	(ii)	$\left \frac{16}{a^2} \left[+ \frac{0^{[2]}}{b^2} \right] = 1 \text{ or } \frac{4^2}{a^2} \left[+ \frac{0^{[2]}}{b^2} \right] = 1$	1	
		$\begin{bmatrix} a^2 \ b^2 \end{bmatrix} \qquad a^2 \ b^2 \end{bmatrix}$ and $a^{[2]} = 4^{[2]}$	_	
			1	
		$\begin{bmatrix} \frac{0^{[2]}}{a^2} + \frac{4}{b^2} = 1 \text{ or } \left[\frac{0^{[2]}}{a^2} \right] + \frac{2^2}{b^2} = 1$ and $b^{[2]} = 2^{[2]}$		
			3	12 2
	(b) (i)	1.73 or 1.732 or $\sqrt{3}$	3	M2 for $\frac{k^2}{4} = \frac{3}{4}$ or better
				or M1 for $\frac{2^2}{16} + \frac{k^2}{4} = 1$ oe
	(ii)	81.8 or 81.78 to 81.79	3	M2 for $2 \times \tan^{-1} \left(\frac{their \sqrt{3}}{2} \right)$ oe
				or M1 for $\tan = \frac{their\sqrt{3}}{2}$ oe
	(c) (i)	8π final answer	1	
	(ii)	72π final answer	2FT	FT their (c)(i) × 9 in terms of π M1 for area factor of 3^2 or 9
				or $[\text{new } a] = 12, [\text{new } b] = 6$

2 (a) (i)	5	1	
(ii)	$\frac{1}{2}$ oe	1	
(iii)	$\frac{5}{3}$ oe	2	M1 for $2^{3x} = 2^5$ oe or better
			or SC1 for either denominator or numerator of index correct in final answer
(iv)	$-\frac{2}{3}$ oe	2	M1 for $3^{3x} = 3^{-2}$ oe or better or $\left(\frac{1}{3}\right)^{-3x} = \left(\frac{1}{3}\right)^2$ or better
			or SC1 for $\frac{2}{3}$ or any negative index
(b)	(y-10)(y+3) seen	B2	B1 for $y (y - 10) + 3(y - 10) [= 0]$ or $y(y + 3) - 10(y + 3)[= 0]$ or for $(y + a)(y + b) [= 0]$ where $ab = -30$ or $a + b = -7$
	10 and – 3 final answers	B1	or for $y - 10 = 0$ and $y + 3 = 0$
4 (a) (i)	$-2, -0.5 \text{ or } -\frac{1}{2}$	2	B1 for each
(ii)	Complete correct curve	5	SC4 for correct curves but branches joined or touching <i>y</i> -axis or B3FT 9 or 10 points or B2FT for 7 or 8 points or B1FT for 5 or 6 points
	-3 -2 -1 1 1 3 1 3 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		and B1indep two separate branches not touching or crossing <i>y</i> -axis

3

1

B1 for each

- 1.95 to - 1.8 - 0.4 to - 0.2 2.05 to 2.2

Any integer k where $k \le -3$

(b)

(c)

(d) (i)	Correct line $y = -5x - 2$ ruled and -0.4 to -0.2 0.55 to 0.75	4	M2 for correct ruled line or M1 for correct line but freehand or for ruled line gradient -5 or ruled line y-intercept -2 , but not $y = -2$ and A1 for each correct solution dependent on at least M1 If 0 scored, SC1 for both correct with no line drawn
(ii)	[a =] 5 and [b =] - 2	2	B1 for one correct value or M1 for $x^3 + 5x^2 - 2x - 1 = 0$ seen

8 (a) (i)	_3	2	M1 for $[g(1)=]$ -2 provided not used in a product or for $5\left(\frac{4}{x-3}\right)$ + 7 or better
(ii)	$\frac{4}{5x+4}$ final answer	2	M1 for $\frac{4}{5x+7-3}$
(iii)	$\frac{4+3x}{x}$ or $\frac{4}{x}+3$ final answer	3	M2 for $xy = 4 + 3x$ or $y - 3 = \frac{4}{x}$ or $x = \frac{4}{y} + 3$
			or $x = \frac{4+3y}{y}$ or M1 for $x = \frac{4}{y-3}$ or $y(x-3) = 4$ or $x-3 = \frac{4}{y}$
			$\operatorname{or} x(y-3) = 4$
(iv)	2	1	
(b) (i)	(5x+7)(x-3) = 4	M1	
	$5x^2 - 15x + 7x - 21 = 4 \text{ oe}$ $5x^2 - 8x - 25 = 0$	B1 A1	Condone omission of '= 4' for the B mark Dep on M1B1 and no errors or omissions at any stage seen
(ii)	$\sqrt{(-8)^2 - 4(5)(-25)}$ or better	В1	or for $\left(x-\frac{4}{5}\right)^2$ oe
	$p = -(-8)$ and $r = 5 \times 2$ oe	B1	must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both
			or for $\frac{4}{5} + \sqrt{\left(\frac{4}{5}\right)^2 + 5}$ or $\frac{4}{5} - \sqrt{\left(\frac{4}{5}\right)^2 + 5}$
	-1.57 and 3.17	B1B1	SC1 for final answers –1.6 or –1.574 to –1.575 and 3.2 or 3.174 to 3.175 or –1.57 and 3.17 seen in working or for –3.17 and 1.57 as final ans
9 (a)	19[.0] or 18.97 nfww	3	M2 for $\sqrt{(4-2)^2 + (13-5)^2}$ oe or M1 for $(4-2)^2 + (13-5)^2$ oe

1			
(b)	[y=] 3x+1	3	B2 for answer $[y =]3x + c$ oe or answer $kx + 1$ $(k \ne 0)$
			or M1 for $\frac{135}{4-2}$ oe or 3
			and M1 for correct substitution of $(-2, -5)$ or $(4, 13)$ into $y = (their m)x + c$ oe
(c)	y = 3x - 5 oe	2FT	FT their gradient from (b) M1 for $y = mx - 5$ with other $m, m \neq 0$ or $y = \{their \text{ gradient from (b)}\}x + c$
			If 0 scored, SC1 for answer $3x - 5$
(d)	$y = -\frac{1}{3}x + \frac{13}{3}$ oe isw	5	B2FT for $-\frac{1}{3}x + c$ (c can be numeric or
			algebraic) FT -1/ their gradient from (b) or M1 for -1/ their gradient from (b) soi
			and B1 for [midpoint of <i>AB</i> =] (1, 4)
			and M1 for substitution of $(1, k)$ or $(k, 4)$ into a linear equation
2 (a)	12	2	12
	$x > \frac{12}{5}$ oe final answer		B1 for $\frac{12}{5}$ oe in answer with incorrect or no
			sign or M1 for one correct step e.g. $5x > 9 + 3$
(b) (i	(y-6) (x+3) final answer	2	M1 for $y(x+3) - 6(3+x)$ or $x(y-6) + 3(y-6)$
(ii	8(x+3y)(x-3y) final answer	3	M2 for $2(2x + 6y)(2x - 6y)$ or $(8x + 24y)(x - 3y)$ or $(8x - 24y)(x + 3y)$ or $4(2x - 6y)(x + 3y)$ or $4(2x + 6y)(x - 3y)$ or $(4x - 12y)(2x + 6y)$ or $(4x + 12y)(2x - 6y)$ or M1 for $8(x^2 - 9y^2)$ or $(x + 3y)(x - 3y)$
(c)	$r = \frac{1}{p+7}$ final answer nfww	4	M1 removes fraction correctly M1 collects terms in r M1 removes r as a factor from their terms in r M1dep divides by bracket to leave r and denominator simplified

3 (a) (i)	10	1	
(ii)	-3.4 to -3.3 and -0.4 to -0.3 and 1.6 to 1.7	3	B1 for each
(iii)	y = -2.3 to -2.1 oe y = 10 to 10.1 oe	2	B1 for each
(b) (i)	2, -1, 4	3	B1 for each
(ii)	Fully correct curve drawn	4	SC3 for correct curves but branches joined or touching <i>y</i> -axis
			or B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots
			and B1 indep for two separate branches not touching or crossing <i>y</i> - axis
(iii)	−3.4 to −3.2 and 1.8 to 1.9	2	B1 for each
(c)	3.2 oe	2FT	FT 2 ÷ their (a)(i) + 3 M1 for $f(-2) = 10$ or their (a)(i) used
(d)	1	1	

	i		
7 (a) (i)	$\frac{12}{x-1} - \frac{10}{x} = 0.5 \text{ oe}$	M2	M1 for $\frac{12}{x-1}$ or $\frac{10}{x}$
	12x - 10(x - 1) = 0.5x(x - 1) or better	M1	FT $\frac{10}{x} - \frac{12}{x-1} = 0.5$ only
	Brackets expanded		
	$x^2 - 5x - 20 = 0$ with no errors or omissions seen	A1	Dep on M3 and brackets expanded
(ii)	$\sqrt{(-5)^2 - 4(1)(-20)}$ or better	B1	Seen anywhere or $(x-\frac{5}{2})^2$ oe
	p = -(-5), r = 2(1) or better	B 1	Must be in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
			or for $\frac{5}{2} + \sqrt{\left(\frac{5}{2}\right)^2 + 20}$ or $\frac{5}{2} - \sqrt{\left(\frac{5}{2}\right)^2 + 20}$
	- 2.62, 7.62 final answers	B1B1	SC1 for - 2.6 or - 2.623 to - 2.624 and 7.6 or 7.623 to 7.624 or -2.62 and 7.62 seen in working or answers 2.62 and - 7.62
(iii)	1 [hr] 49 [mins]	2FT	FT $12 \div (their + ve \text{ root} - 1)$ or $0.5 + 10 \div (their 7.62)$ in hrs and mins, rounded to nearest min M1 for $12 \div (their + ve \text{ root} - 1)$ or $0.5 + 10 \div (their 7.62)$
(b) (i)	2.5	1	
(ii)	1312.5 final answer	3	M2 for any complete correct method e.g $25 \times 10 \div 2 + 45 \times 25 + 5 \times 25 \div 2$ M1 for any correct method for a relevant area under the graph

4	(a)	0.92,, 0.5, -1,, -1, 0.5,, 0.92	3	B2 for 4 or 5 correct or B1 for 2 or 3 correct
	(b)	Fully correct graph	5	B4 for correct graph but branches joined OR B3FT for 11 or 12 correct points or B2FT for 9 or 10 correct points or B1FT for 7 or 8 correct points
				Blindep for a branch on each side of the y-axis, without touching it
	(c) (i)	Correct ruled line through $(-2, 1)$ and $(2, -3)$	2	B1 for straight line with gradient –1 or cutting y-axis at –1 or correct line but freehand or short correct ruled line
	(ii)	0.7 to 0.95	1	
	(iii)	[p =] 2 and [q =] - 2	3	B2 for $x^3 + 2x^2 - 2 = 0$ oe
				or B1 for $x^2 - 2 = -x^3 - x^2$ oe or better
				or $1+1-\frac{2}{x^2}+x = 0$ or better
	(d) (i)	(1.3 to 1.6, 0)	1	
	(ii)	Ruled line from $(0, -2)$ to intersection of <i>their</i> graph with positive <i>x</i> -axis	1FT	
	(iii)	Tangent [to curve] A or (1.3 to 1.6, 0)	1 1	
8	(a)	$\frac{323}{x} + \frac{323}{x+2} = 36 \text{ oe three term}$ equation	B2	B1 for $\frac{323}{x}$ seen oe or $\frac{323}{x+2}$ seen oe
		$323(x+2) + 323x = 36x(x+2) \text{ oe}$ or $\frac{323x + 646 + 323x}{x(x+2)} = 36 \text{ oe}$	M1	i.e. for clearing the fractions (or all still over common denominator) or reducing the two algebraic fractions to one fraction and expanding the brackets in the numerator
		$36x^2 - 574x - 646 = 0$	Δ1	answer reached without any omissions or errors

9	(a)	236		3	B2 for 243 and 7 or M2 for $3^{2(2)+1} - (2(3^{[1]}) + 1)$ oe B1 for h(5) or f(3) soi or M1 for $3^{2x+1} - (2(3^x) + 1)$ or better
	(b)	6 <i>x</i> +	1 final answer	2	M1 for $3(2x+1)-2$
	(c)	x < 3	3 oe final answer	2	M1 for $1 + 2 > 3x - 2x$ or $2x - 3x > -2 - 1$ oe
	(d)	-2		1	
	(e)	$\frac{x+1}{3}$	$\frac{2}{2}$ oe final answer	2	M1 for $x = 3y - 2$ or $y + 2 = 3x$ or $\frac{y}{3} = x - \frac{2}{3}$
	(f)	$\frac{6x^2}{2}$	$\frac{-x+3}{x+1}$ final answer	3	M1 for $5 + (2x + 1)(3x - 2)$ or better isw B1 for common denominator $2x + 1$ isw
	(g)	9		1	
2	(a)		1	1	
	(b)		Fully correct graph	4	B3FT for 6 or 7 points plotted or B2FT for 4 or 5 points plotted or B1FT for 2 or 3 points plotted
	(c) (i)		-1 < ans < -0.8 1.25 < ans < 1.45 2.5 < ans < 2.6	1 1 1	
	(ii)		-0.7 < ans < -0.5	2	M1 for evidence of $y = -x$ or $\frac{x^3}{3} - x^2 + 1 = -x$
	(d) (i)		y = 1 to 1.1 oe	1FT	FT only if a clear maximum point
			y = -0.4 to -0.33 oe	1FT	FT only if a clear minimum point
	(ii)		−0.4 to −0.33 oe	1FT	Correct or FT their graph
	(b) (i)		$\begin{vmatrix} x+y \geqslant 9 & \text{oe} \\ y \geqslant 2 & \text{oe} \end{vmatrix}$	1 1	If zero scored, SC1 for $x + y > 9$ and $y > 2$
	(ii)		Fully correct diagram with unwanted region shaded	4	B1 for $2x + 3y = 24$ ruled
					$\mathbf{B1} \text{ for } x + y = 9 \text{ ruled}$
					B1 for $y = 2$ ruled
	(iii)		20 [x =] 7 [y =] 2	1 1 1	If zero scored, SC1 for $2x + 3y$ evaluated from integers

7 (a)	54.50 final answer	2	B1 for 54.495 to 54.496 or 54.5
			or M1 for 200 ÷ 3.67
(b) (i)	$\frac{1000}{x(x+1)}$ final answer	3	M1 for $1000 (x + 1) - 1000x$ M1 for denominator $x(x + 1)$
(ii)	$\frac{1000}{x} - \frac{1000}{x+1} = 4.5[0] \text{ oe}$	M1	Allow their (b)(i) for first M1 only for a single fraction
	or $\frac{1000}{x(x+1)} = 4.5$ 1000 = 4.5x (x+1) $4.5x^2 + 4.5x - 1000 = 0$ $9x^2 + 9x - 2000 = 0$	M1dep	Correctly multiplying by algebraic denominator Equation reached without any errors or omissions and at least one step after clearing the denominators of the fractions still with
(iii)	$\frac{-9 \pm \sqrt{9^2 - 4(9)(-2000)}}{2(9)}$	2	brackets included B1 for $\sqrt{9^2 - 4(9)(-2000)}$ If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ then
	- 15.42 14.42	B1 B1	SC1 for answers -15.4 or -15.42 to -15.41 and 14.4 or 14.41 to 14.42 or for -15.42 and 15.42 or -15.42 and 15.42 or -15.42 and 14.42 seen but not final answer
(iv)	69.34 to 69.37 final answer must be 2 dp	2FT	Answers without working only score B1, B1 or SC1 FT 1000 ÷ their positive x with final answer rounded up or down to 2 dp or M1 for 1000 ÷ their positive x
9 (a) (i)	1.5 oe	1	
(ii)	$\frac{3}{y-2}$ oe final answer	3	M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b$, a and $b \neq 0$
(b) (i)	-3	1	
(ii)	65 536 final answer	2	B1 for h(16) oe e.g. h(2 ⁴)
(iii)	-6	2	M1 for $2 - x = 2^3$ oe
(iv)	3	1	

_				
2	(a)	-4.5 and 10.5	2	B1 for each value
	(b)	Correct curve	5	B4 for correct curve with branches joined OR B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points and B1 independent for one branch on each side of the y-axis and not touching or crossing the y-axis
	(c)	5	1	
	(d) (i) (ii)	Line $y = 15 - 3x$ ruled and -0.4 to $-0.310.35$ to $0.452.2$ to $2.3[a =] 6[b =] -14[c =] 0$	3	B3 for correct line and 2 correct values or B2 for correct line or M1 for ruled line with gradient -3 or through $(0, 15)$ or SC2 for no/wrong line and three correct values or SC1 for no/wrong line and two correct values or for correct freehand line B2 for $6x^3 - 14x^2 + 2 = 0$ oe or M1 for correct removal of denominator or collection of terms on one side
3	(a)	2.25 oe	2	M1 for $8x + 4x = 22 + 5$ or better
	(b)	$x \ge 3.5$ final answer	2	M1 for $6x - 2x \ge 14$ or better
	(c)	(x-7)(x+3) final answer	2	M1 for $x(x+3) - 7(x+3)$ or $x(x-7) + 3(x-7)$
	(d)	$12x^2 + xy - 6y^2$ final answer	3	or for $(x + a)(x + b)$ where $ab = -21$ or $a + b = -4$ M2 for $12x^2 + 9xy - 8xy - 6y^2$ or M1 for any two of the four terms correct

11	$5 \text{ and } -\frac{27}{2} \text{ oe}$	7	M2 for $12 \times 2(2x-1) + (x+3)(2x-1) = 12 \times 3(x+3)$ oe or M1 for a common denominator with 2 or more of the terms
			and B2 for $2x^2 + 17x - 135$ [= 0] oe or B1 for $48x - 24$ or $2x^2 - x + 6x - 3$ or $36x + 108$ or $2x^2 - x + 54x - 27$ or $132 - 12x$ or $37x + 111 - 2x^2 - 6x$
			and M2 for $(2x+27)(x-5)$ or their correct factors or formula or M1 for $2x(x-5)+27(x-5)$ or $x(2x+27)-5(2x+27)$ or $(2x+a)(x+b)$ where $ab=-135$ or $a+2b=17$