
4. SOFTWARE
Types of software

SYSTEM SOFTWARE APPLICATION SOFTWARE

Provides services that computer requires. Provides services that the user requires.

Examples:
- Utility software (eg. defragmentation

software, antivirus, firewall, screensaver)
- Operating system

Examples:
- Word processor
- Web browser
- Photo/video editing software
- Gameware

Runs when system is turned on and stops
running when system is turned off.

Runs as per the user’s request.

Smaller; requires less storage space. Requires more storage space.

Complex; performs variety of tasks. Only performs a single task.

NOTE:
- Application software runs directly on the operating system.
- Component in the computer that would store both types of software when the power is

turned off: Secondary storage // HDD // SSD

Operating System
- A program designed to run other programs on a computer.
- Provides an environment in which applications can run and also provides an interface

between computer & human operator.
- Backbone of computer: manages both software and hardware resources.
- Examples: Windows, MAC, Linux

NOTE:
- Most computers store OS on a HDD or SSD, since they tend to be large programs.
- Mobile phones and tablets store OS on SSD (as HDD is too large).

Functions

Provides user interface
(Human computer interface /
HCI)

- Allows user to interact with OS.
- Converts user input to form that computer can

understand and vice versa.
- Should be easy to use

Manages user accounts - Each user is provided with account for access to
system.

- Accounts accessed using username + password
- Users granted different levels of access
- Monitor login activity & log users out if they have been

inactive for a while

Manages security software/
provides system security

- Creates/deletes users for system
- Provides access level rights
- Protects from viruses/worms/malware
- Regular security updates

Manages file handling/ file
management

- Create/save/open/close/move/copy/ rename/deletes files
- Sort files
- controls file permissions: ability to open/view

Manages
hardware/peripherals/drivers

- Handles all devices connected to computer: input
devices (keyboard & mouse) + output devices (monitor
& printer)

- Communicates with devices through drivers

Driver
- Software that translate instructions from computer so

devices can understand
- Allows devices to communicate with the computer

Manages multitasking - Allows tasks to be completed at same time.
- Uses time slicing: splits different tasks into small

segments.
- Tasks can be run one after the other: to seem like

multiple tasks are completed at same time.

Handles interrupts

Memory management - Keeps track of status of each memory location
- Manages movement of data to & from RAM
- Checks that processes have enough memory located to

them
- Makes sure that 2 processes don’t try to access same

memory location
- Manages transfer of pages between virtual memory &

RAM
- Allows multitasking

Platform for running
application software

- Application programs & hardware communicate
through system within OS called application programs
interface(API)

- OS allocates memory space & controls application's
data, devices & user access

Why PC requires an operating system
- It performs a number of basic tasks, including controlling hardware, file handling.
- It allows the user to communicate with the computer using hardware.
- It provides the user with a user interface.
- PC’s are often used to perform many complex tasks at a time.
- An OS is needed to handle this multitasking.
- Therefore, it also provides the ability to handle interrupts.

Describe purpose of operating system
- It performs the basic functions of a computer
- It manages the hardware
- It provides a platform to run software
- It provides a user interface
- It performs tasks such as (any example of function of an operating system)

Hardware, Firmware & the OS - Running of applications

- Applications are run on the operating system
- The operating system is run on the firmware
- The bootloader (firmware) is run on the hardware

Example: If you were to type on a word processing document
- Word processor communicates with OS to request key presses.
- OS communicates with firmware to check whether keyboard
(hardware) is available.
- Once connection is established with hardware (keyboard) it
communicates back through firmware
- Key instructions passed up to OS & finally displayed on word
processing software

Part of a computer of which the bootstrap is an example: firmware

Interrupts
- A signal sent from a device/ software to a microprocessor requesting its attention.
- Microprocessor suspends all operations until interrupt has been serviced.
- It causes OS to take specified action.

How interrupt is generated - Device/software generates interrupt
- Interrupt signal sent from

device/software to CPU/processor

How interrupt is handled using interrupt
service routine

- Interrupt is given priority
- Interrupt is queued
- Interrupt causes CPU to stop current

process
- Status of current process & contents of

registers is first saved
- CPU services the interrupt
- Interrupt service routine is used

What happens as a result of interrupts - Interrupt will be executed instead of
original instructions

- Once interrupt is serviced, status of
interrupted process is restored

- Previous process continues
- Message is displayed/output to user

When a user is reading a text on the mobile phone, they may also get a telephone call on
the mobile phone. An interrupt signal is generated that results in an output to inform the
user that a person is calling them. Describe how the interrupt signal is processed to inform
the user that a person is calling them.
- The interrupt signal is sent to the CPU/processor
- The CPU stops the task it is currently processing …
- ... to service the interrupt
- An interrupt service routine is used (to service the interrupt)
- Once the interrupt is serviced, a message is displayed to notify the user of the call

Role of interrupt in generating message on computer that paper has jammed
- Printer generates interrupt
- Interrupt is given a priority
- Interrupt is queued
- Interrupt stops CPU from processing current task
- CPU will service interrupt // Interrupt handler services interrupt …
- … generating an output message to state there is a paper jam

Why interrupts are needed
- To identify that the processor's attention is required // to stop current process/task
- To allow multitasking
- To allow for efficient processing, by prioritising actions

- To allow for efficient use of hardware
- To allow time-sensitive requests to be dealt with immediately
- To avoid the need to poll devices

What would happen if computer does not use interrupts
- The computer would only start a new task when it had finished processing current task
- Computer will not be able to multitask
- Errors may not be dealt with
- Computer would become impossible to use

Types of interrupt:
- Hardware Interrupt

- Moving the mouse
- Clicking a mouse button
- Plugging in a device
- Paper jam in printer
- Printer out of paper

- Software Interrupt
- Division by zero
- Two processes accessing the same memory location
- Null value

Examples of when interrupt is generated
(in printer)
- Paper jam
- Paper tray empty/ runs out of paper
- Runs out of ink
- Buffer requires more data
Software interrupt
- Division by zero
- Two processes trying to access the same memory location
Change of task
- When switching from one application to another
- A peripheral is connected/disconnected
- A phone/video call is received
Hardware interrupt
- A key on a keyboard is pressed
- A mouse button click

NOTE:
- They can be hardware based or software based
- They are handled by the OS.
- They have different levels of priority; don’t work out which program to give priority to.
- They allow the computer to multitask or have several windows open at the same time
- They allow multiple functions to co-exist.

Programming languages
Computer program: a list of instructions that enable a computer to perform a specific task.
Syntax: structure of language statements in a computer program.

High-level language Low-level language

Uses English-like statements / close to human
language

- Close to the language processed
by computers

- May use mnemonics
- Eg: assembly language/machine

code

- Needs to be converted to machine code to be
processed by computer

- ... using a translator

- Machine code doesn't need to be
converted

- Assembly language require
assembler

Portable / machine independent Machine dependent

Problem / logic focussed

Advantages
1. Closer to human language

- Easier/quick to read/write/understand: can
write code in less time

- Easier/quicker to debug: can find and correct
errors in less time

- Less likely to make errors
2. Machine independent/ code is portable

- Can be used on many different computers
without need for understanding of hardware

- Because it is written in source code.
- Because it’s compiled to object code.

3. Only need to learn a single language
- This can be used on many computers.

4. They have built-in functions or libraries
- Saves time when writing the program

5. Can use an IDE

Advantages
- Directly manipulate hardware
- Can use specialised hardware /

machine-dependent instructions
- Quicker to execute
- Smaller file size // less storage

space
- Program will be more memory

efficient: useful when application
has high memory consumption

- No requirement for program to be
portable

- No requirement for
compiler/interpreter

6. No need to manipulate memory addresses
directly
- specialised knowledge of this not required

7. Can focus on the problem instead of the
manipulation of memory/hardware

8. Easier to maintain
9. One line of code can carry out multiple

commands

Disadvantages
- Cannot directly manipulate hardware
- Take longer to execute: may need to wait for

translation before running
- Program may be less efficient
- Programs larger

Disadvantages
- More difficult to

read/write/understand.
- Takes longer to write & debug
- Not machine independent

Assembly language
- Form of low-level language that uses mnemonics
- Assembler is needed to translate assembly language program to machine code

Drawbacks of assembly language
- Programs are not portable
- It is complex to learn
- Difficult to debug

Translators

Compiler Interpreter

how program is translated - Translates high-level
language to low-level
language/ machine code

- Checks/translates all code
before it is executed

- Creates executable file

- Translates high-level
language to low-level

- Checks/translates one
line of code & executes it
before moving onto next
line

how errors are reported - Creates an error report
after trying to compile

- Displays all errors in code
- Errors require correction

before executing

- Stops when error found
- when corrected, program

can be run from same
position // allows error
correction in real time

Similarities between compiler & interpreter
- Both translate high level language to machine code
- Both generate error report // check for errors

Difference between compiler & interpreter

Interpreter Compiler

translates one line at a time / checks one
line and then executes immediately

translates whole code in one go / checks all
code before executing

stops & reports when error is encountered
// corrects errors in real time

creates error report at the end of
translation

run code up to the point it finds an error will not run code at all if an error is found

does not produce an executable file produces an executable file

required to run the code each time if used Not required to run the code each time

Used during program development
- Easier to debug
- … as errors immediately reported when

detected

Used for program distribution
- Creates an executable file
- … so, translator not required every time
- … so would not release source code;

source code cannot be stolen/edited
- … making it machine independent

Benefits of compiling
- Code will run without the need of an translator
- Code is platform independent.
- Source code not available, therefore cannot be modified
Drawbacks of compiling
- Source code not available, therefore cannot be modified
- Comments, etc. are not visible
- Future changes will require the code to be recompiled

Uses of interpreter & compiler
Why both interpreter and compiler are used together
- To translate high-level language to low-level language.
- Interpreter is used while writing the program.
- Interpreter is used to debug code line-by-line.
- Compiler is used when the program is completed.
- Compiler is used to create a separate executable file (so compiler no longer needed).
- If it runs for the first time in a compiler, there are no syntax errors.

At what point of game creation is it appropriate to use an interpreter
- During development / when writing the program // when debugging
- Easier to debug

- Stops when an error is detected
- Reports one error at a time
- Can correct errors in run-time // correct the line and then continue running from that point
- Can test one section without the rest of the code being completed

At what point of game creation is it appropriate to use a compiler
After completion / for distribution:
- It creates an executable file
- That can be distributed without source codE
- So that other people cannot edit/view the code
- So end users do not need translator software // so end users do not need to

compile/interpret each time
- So it is machine/platform independent
For final/ repeated testing:
- It creates an executable file
- Do not need to retranslate for each test sequence
- Can test repeatedly with different data faster

Integrated development environment (IDE)
Software that provides useful functions for a programmer writing a computer program

Features/functions

Code editors - allows users to write & manipulate source code
- includes features like auto-completion & auto-correction,

bracket matching, syntax checks

Auto-completion

Auto-correction

Run-time environment allow the program to run and see its corresponding output

Built‐in translator
(compiler/interpreter)

compiles or interprets the code

Error diagnostics - Identifying errors: highlights areas of code / provides error
messages where error occurred e.g. indentation errors

- Debugging errors: Provides step by step instructions of what
is happening in each line of code, to catch logical errors

Prettyprinting - changing font, font size, making text bold
- displays keywords in different colours

Commenting - sections of code commented to explain what it is doing

