Mathematics Paper 4

Numbers

QUESTIONS

(a)		He has a train that consists of a locomotive and 4 coaches. The mass of the locomotive is 87 g and the mass of each coach is 52 g.							
	(i)	Work out the total mass of the train.							
			g [2]						
	(ii)	Work out the mass of the locomotive as a percentage of	the total mass of the train.						
			% [1]						
(b)		e train is 61 cm long and travels at a speed of 18 cm/s. akes 4 seconds for the whole of the train to cross a bridge.							
	Cal	culate the length of the bridge.							
			cm [2]						
(c)	An	ew locomotive costs \$64.							
	Cal	culate the cost of the locomotive in rupees when the excha	ange rate is 1 rupee = \$0.0154.						
	Giv	re your answer correct to the nearest 10 rupees.							
			rupees [2]						

Dhanu has a model railway.

(d)	The	cost of a railway magazine increases by 12.5% to \$2.70.
	Calc	culate the cost of the magazine before this increase.
		\$ [2
(e)		nu plays with his model railway from 0650 to 1115. then rides his bicycle for 3 hours.
		If the ratio time playing with model railway: time riding bicycle. The your answer in its simplest form.
		: [3
(f)	The	value of Dhanu's model railway is \$550.
(-)	This	s value increases exponentially at a rate of $r\%$ per year. the end of 5 years the value will be \$736.
	Calc	culate the value of r .
		r =[3
		,
3	(a)	Manjeet uses 220 litres of water each day. She reduces the amount of water she uses by 15%.
		Calculate the number of litres of water she now uses each day.
		litres [2]

7.

(c) Find the *n*th term of each sequence.

- 9 This year, 40 students have each travelled by one or more of plane (P), train (T) or boat (B).
 - 7 have travelled only by plane.
 - 11 have travelled only by train.
 - 9 have travelled only by boat.

$$n(P \cap T) = 8$$

$$n(B \cap T) = 3$$

$$n(B \cap P) = 6$$

- (a) Complete the Venn diagram. [3]
- **(b)** Find $n(P \cup B)'$.

-[1]
- (c) Use set notation to complete the statement.

$$(P \cup T \cup B)' = \dots$$
[1]

10 f(x) = 4x - 1 $g(x) = x^2$ $h(x) = 3^{-x}$

(c) Find the value of hh(l), correct to 4 significant figures.

.....[3]

1	(a)	In 2	In 2018, Gretal earned \$32 000.					
		(i)	She paid tax of 24% on these earnings.					
			Work out the amount she paid in tax in 2018.					
				\$	[2]			
		(ii)	In 2019, Gretal's earnings increased by 7%.					
			Work out her earnings in 2019.					
				\$	[2]			
	(b)	Gre	tal invests \$5000 at a rate of 2% per year compound inte					
	` '		culate the value of her investment at the end of 3 years.					
		Cur	control the value of her my control at the end of b years.					
				\$	[2]			
	(a)	0	amounth Country and a total of \$200 are amounts	Φ	[2]			
	(c)		e month, Gretal spent a total of \$360 on presents. spent $\frac{1}{5}$ of this total on presents for her parents.					
			spent $\frac{2}{3}$ of the remaining money on presents for her friends.	nds.				
			spent the rest of the money on presents for her sisters.					
		Cal	culate the percentage of the \$360 that she spent on presen	nts for her sisters.				
				%	[4]			

	This was an increase of 9% on his earnings in 2018.
	Work out his earnings in 2018.
	\$ [2
(e)	Arjun and Gretal each pay rent.
	In 2018, the ratio of the amount each paid in rent was Arjun: Gretal $= 5:7$. In 2019, the ratio of the amount each paid in rent was Arjun: Gretal $= 9:13$.
	Arjun paid the same amount of rent in both 2018 and 2019. Gretal paid \$290 more rent in 2019 than she did in 2018.
	Work out the amount Arjun paid in rent in 2019.
	\$ [4
	Ψ

(d) Arjun earned \$36515 in 2019.

5 x is an integer.

$$\mathcal{E} = \{x : 41 \le x \le 50\}$$

 $A = \{x : x \text{ is an odd number}\}$

 $B = \{x : x \text{ is a multiple of 3}\}$

 $C = \{x : x \text{ is a prime number}\}\$

(a) Complete the Venn diagram to show this information.

[3]

- (b) List the elements of
 - (i) $A \cap C$,

.....[1]

(ii) $(B \cup C)'$.

.....[1]

(c) Find $n(A \cap B \cap C)$.

.....[1]

(ii)	Write \$24.60 as a fraction of \$2870. Give your answer in its lowest terms.	\$ [2]
(iii)	Write \$1.92 as a percentage of \$1.60.	[2]
(b) In a	a sale the original prices are reduced by 15%.	% [1]
(i)	Calculate the sale price of a book that has an original	price of \$12.
(ii)	Calculate the original price of a jacket that has a sale	\$ [2]
(1)	Calculate the original price of a jacket that has a safe j	γιος οτ φ30,23 ·
		\$ [2]

1 (a) (i) Divide \$24 in the ratio 7:5.

(c)	(i)	Dean invests \$500 for 10 years at a rate of 1.7% per year simple interest.				
		Calculate the total interest earned during the 10 years.				
		\$	[2]			
	(ii)	Ollie invests \$200 at a rate of 0.0035% per day compound interest.				
		Calculate the value of Ollie's investment at the end of 1 year. [1 year = 365 days.]				
		\$	[2]			
	(iii)	Edna invests \$500 at a rate of $r\%$ per year compound interest. At the end of 6 years, the value of Edna's investment is \$559.78.				
		Find the value of r .				
		r =	[3]			

1	(a)	
		Campsite fees (per day)
		Tent \$15.00 Caravan \$25.00
		The sign shows the fees charged at a campsite. Today there are 54 tents and 18 caravans on the site.
		Calculate the fees charged today.
		\$[2]
	(b)	In September the total income at the campsite was \$37054. This was a decrease of 4.5% on the total income in August.
		Calculate the total income in August.
		\$ [2]
	(c)	The visitors to the campsite today are in the ratio
		men: women = $5:4$ and women: children = $3:7$.
		(i) Calculate the ratio men: women: children in its simplest form.
		: [2]
		(ii) Today there are 224 children at the campsite.

Calculate the total number of men and women.

.....[3]

(d)	The space allowed for each tent is a rectangle measuring $8\mathrm{m}$ by $6\mathrm{m}$, each correct to the nearest metre.							
	Calculate the upper bound for the area of the space allowed for each tent.							
	m ² [2]							
(e)	The value of the campsite has increased exponentially by 1.5% every year since it opened 30 years ago.							
	Calculate the value of the campsite now as a percentage of its value 30 years ago.							
	% [2]							

2	(a)	A plane has 14 First Class seats, 70 Premium seats and 168 Economy seats.				
			the ratio First Class seats: Premium seats: Economy seats. e your answer in its simplest form.			
			: :: [2]			
	(b)	(i)	For a morning flight, the costs of tickets are in the ratio			
			First Class: Premium: Economy = 14:6:5.			
			The cost of a Premium ticket is \$114.			
			Calculate the cost of a First Class ticket and the cost of an Economy ticket.			
			First Class \$			
			Economy \$ [3]			
		(ii)	For an afternoon flight, the cost of a Premium ticket is reduced from \$114 to \$96.90 .			
			Calculate the percentage reduction in the cost of a ticket.			
			% [2]			
	(c)	Wh	en the local time in Athens is 09 00, the local time in Berlin is 08 00.			
	(0)	A pl	lane leaves Athens at 1315. Trives in Berlin at 1505 local time.			
		(i)	Find the flight time from Athens to Berlin.			
			h min [1]			
		(ii)	The distance the plane flies from Athens to Berlin is 1802 km.			
		()	Calculate the average speed of the plane.			
			Give your answer in kilometres per hour.			
			km/h [2]			

7

			•
			• • •
			0000
	•	000	0000
	0 0	000	0000
0	00	000	0000
Diagram 1	Diagram 2	Diagram 3	Diagram 4

These are the first four diagrams of a sequence.

The diagrams are made from white dots and black dots.

(a) Complete the table for Diagram 5 and Diagram 6.

Diagram	1	2	3	4	5	6
Number of white dots	1	4	9	16		
Number of black dots	0	1	3	6		
Total number of dots	1	5	12	22		

[2]

(h)	Write an	expression.	in terms	of n	for the	number	of white	date it	Diagram	и
w	wille all	CXDICSSIOII.	III terms	or n_*	TOT THE	Hulliber	or white	uous II	ı Diagianı	n.

.....[1]

(c) The expression for the total number of dots in Diagram n is
$$\frac{1}{2}(3n^2 - n)$$
.

(i) Find the total number of dots in Diagram 8.

.....[1]

(ii) Find an expression for the number of black dots in Diagram n. Give your answer in its simplest form.

.....[2]

(d)	T is the total number of dots used to make all of the first n diagrams.
	$T = an^3 + bn^2$
	Find the value of <i>a</i> and the value of <i>b</i> . You must show all your working.

<i>a</i> =	
<i>b</i> =	 [5]

Q			
		n	
	ı		

- (f) Alan invests \$200 at a rate of r% per year compound interest. After 2 years the value of his investment is \$206.46.
 - (i) Show that $r^2 + 200r 323 = 0$.

[3]

(ii) Solve the equation $r^2 + 200r - 323 = 0$ to find the rate of interest. Show all your working and give your answer correct to 2 decimal places.

 $r = \dots [3]$

Kar	el travelled from London to Johannesburg and then from Johannesburg to Windhoek.
(a)	The flight from London to Johannesburg took 11 hours 10 minutes. The average speed was 813 km/h.
	Calculate the distance travelled from London to Johannesburg. Give your answer correct to the nearest 10km.
	1 [2]
	km [3]
(b)	The total time for Karel's journey from London to Windhoek was 15 hours 42 minutes. The total distance travelled from London to Windhoek was 10 260 km.
	(i) Calculate the average speed for this journey.
	km/h [2]

	(ii)	The	cost of Karel's journey from London to Windho	pek was \$470.
		(a)	Calculate the distance travelled per dollar.	
		(b)	Calculate the cost per 100 km of this journey. Give your answer correct to the nearest cent.	km per dollar [1]
(c)			nged \$300 into 3891 Namibian dollars.	\$ per 100 km [2]
	Com	pleto	the statement. $\$1 = \dots \dots \dots \dots $ Namibian	a dollars [1]

,	(a)	Bet	h invests \$2000 at a rate of 2% per year compound interest.
		(i)	Calculate the value of this investment at the end of 5 years.
			\$ [2]
		(**)	
		(11)	Calculate the overall percentage increase in the value of Beth's investment at the end of 5 years.
			% [2]
		(iii)	Calculate the minimum number of complete years it takes for the value of Beth's investment
			to increase from \$2000 to more than \$2500.
			[3]
	(b)	The	population of a village decreases exponentially at a rate of 4% each year.
	(6)		population is now 255.
		Cal	culate the population 16 years ago.
			[2]
			[3]

11

Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	13	9	5	1		
В	0	7	26	63		
С	7 /8	<u>8</u> 16	9/32	10 64		

(a) Complete the table for the three sequences.

[10]

(b) One term in Sequence C is $\frac{p}{q}$.

Write down the next term in Sequence C in terms of p and q.

.....[2]

			$100000\mathrm{km^2}$.
(i)	Write this surfac	e area in standard form.	
			km
(ii)	Water covers 70	.8% of the Earth's surface.	
	Work out the are	ea of the Earth's surface covere	ed by water
	Work out the are	of the Earth's Surface covery	od by Water.
			km
The	table shows the s	surface area of some countries	and their estimated population in 2017.
	Country	Surface area (km ²)	Estimated population in 2017
Brui	nei	5.77 × 10 ³	433 100
Chi	na	9.60 × 10 ⁶	1 388 000 000
Fran	nce	6.41 × 10 ⁵	67 000 000
Mal	dives	3.00×10^{2}	374 600
(ii)	The ratio surfa	ace area of the Maldives : surfa	km
	can be written in	the form $1:n$.	
	Find the value o	f <i>n</i> .	
			n =
(iii)	Find the surface	area of France as a percentage	
(iii)	Find the surface	area of France as a percentage	
(iii)	Find the surface	area of France as a percentage	
(iii)	Find the surface	area of France as a percentage	
(iii)	Find the surface	area of France as a percentage	

	(iv)	Find the population density of the Maldives. [Population density = population ÷ surface area]
		people/km ² [2]
(c)	The	e population of the Earth in 2017 was estimated to be 7.53×10^9 .
	The	e population of the Earth in 2000 was estimated to be 6.02×10^9 .
	(i)	Work out the percentage increase in the Earth's estimated population from 2000 to 2017.
		% [2]
	(ii)	Assume that the population of the Earth increased exponentially by $y\%$ each year for these 17 years.
		Find the value of y .
		y = [3]

11 The table shows the first four terms in sequences A, B, and C.

Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	4	9	14	19		
В	3	10	29	66		
C	1	4	16	64		

Complete the table.

1	Amo	ol and Priya deliver 645 parcels in the ratio Amol: Priya = 11:4	
	(a)	Calculate the number of parcels Amol delivers.	
	(b)	Amol drives his truck at an average speed of 50 km/h. He leaves at 07 00 and arrives at 11 15. Calculate the distance he drives.	[2]
	(c)	Priya drives her van a distance of 54km.	km [2]
	(0)	She leaves at 10 55 and arrives at 1238.	
		Calculate her average speed.	
			km/h [3]
	(d)	Priya has 50 identical parcels. Each parcel has a mass of 17kg, correct to the nearest kilogram.	
		Find the upper bound for the total mass of the 50 parcels.	
			kg [1]

(e)	67 c	of the 645 parcels are damaged on the journey.
	Cal	culate the percentage of parcels that are damaged.
		% [1]
(f)	(i)	29 parcels each have a value of \$68.
		By writing each of these numbers correct to 1 significant figure, find an estimate for the total value of these 29 parcels.
		\$ [1]
	(ii)	Without doing any calculation, complete this statement.
		The actual total value of these 29 parcels is less than the answer to part (f)(i)
		because

9 (a) The Venn diagram shows two sets, A and B.

- (i) Use set notation to complete the statements.

 - **(b)** $\{f,g\} = \dots$ [1]
- (ii) Complete the statement.

$$n(\dots) = 6$$
 [1]

(b) In the Venn diagram below, shade $C \cap D'$.

[1]

- (c) 50 students study at least one of the subjects geography (G), mathematics (M) and history (H).
 - 18 study only mathematics.
 - 19 study two or three of these subjects.
 - 23 study geography.

The Venn diagram below is to be used to show this information.

(i) Show that x = 4.

[2]

(ii) Complete the Venn diagram.

[2]

(iii) Use set notation to complete this statement.

$$(G \cup M \cup H)' = \dots$$
[1]

(iv) Find $n(G \cap (M \cup H))$.

.....[1]

11 (a) The table shows the first five terms of sequence A and sequence B.

Term	1	2	3	4	5	6
Sequence A	7	13	23	37	55	
Sequence B	1	3	9	27	81	

	Sequence A	7	13	23	37	55	
	Sequence B	1	3	9	27	81	
		the table for the term of	the 6th term o	of each seque	nce.		[2]
	(a) sequ	ence A,					
							 [2]
	(b) sequ	ience B.					
							 [2]
(b)	The <i>n</i> th term o	f another sequ	ience is $4n^2$	+n+3.			
	Find						
	(i) the 2nd te	rm,					
	(ii) the value	of n when the	nth term is 4	98.			 [1]

 $n = \dots$ [3]

_					
6	$\mathscr{E} =$	{students	in a	schoo	13

 $F = \{\text{students who play football}\}\$

 $B = \{\text{students who play baseball}\}\$

There are 240 students in the school.

- 120 students play football
- 40 students play baseball
- 90 students play football but not baseball.
- (a) Complete the Venn diagram to show this information.

[2]

(b) Find $n(F' \cap B')$.

[1	[1			
----	---	---	--	--	--

(c) A student in the school is chosen at random.

Find the probability that this student plays baseball but not football.

 ۲1	1
 11	ı

(d) Two students who play baseball are chosen at random.

Find the probability that they both also play football.

Г2	c
 ĮЭ	١.

8	(a)	The price of a book increases from \$2.50 to \$2.65.	
		Calculate the percentage increase.	
		% [[3]
	(b)	Scott invests \$500 for 7 years at a rate of 1.5% per year simple interest.	
		Calculate the value of his investment at the end of the 7 years.	
		caroniate are varies of his investment at the one of the 7 years.	
		\$[31
	(2)		,
	(c)	In a city the population is increasing exponentially at a rate of 1.6% per year.	
		Find the overall percentage increase at the end of 20 years.	
		% [2]
	(d)	The population of a village is 6400.	
	(u)	The population is decreasing exponentially at a rate of $r\%$ per year.	
		After 22 years, the population will be 2607.	
		Find the value of r .	
			21
		r =[[3]

- 11 Brad travelled from his home in New York to Chamonix.
 - He left his home at 16 30 and travelled by taxi to the airport in New York. This journey took 55 minutes and had an average speed of 18 km/h.
 - He then travelled by plane to Geneva, departing from New York at 2215.
 The flight path can be taken as an arc of a circle of radius 6400 km with a sector angle of 55.5°.
 The local time in Geneva is 6 hours ahead of the local time in New York.
 Brad arrived in Geneva at 1125 the next day.
 - To complete his journey, Brad travelled by bus from Geneva to Chamonix.
 This journey started at 13 00 and took 1 hour 36 minutes.
 The average speed was 65 km/h.
 The local time in Chamonix is the same as the local time in Geneva.

Find the overall average speed of Brad's journey from his home in New York to Chamonix. Show all your working and give your answer in km/h.

 km/h	[11]

1	(a)	The price of a newspaper increased from \$0.97 to \$1.13.
		Calculate the percentage increase.
		% [3]
	(b)	One day, the newspaper had 60 pages of news and advertisements. The ratio number of pages of news: number of pages of advertisements = 5:7.
		(i) Calculate the number of pages of advertisements.
		[2]
		(ii) Write the number of pages of advertisements as a percentage of the number of pages of news.
		% [1]
	(c)	On holiday Maria paid 2.25 euros for the newspaper when the exchange rate was $1 = 0.9416$ euros.
	(c)	At home Maria paid \$1.13 for the newspaper.
		Calculate the difference in price.
		Give your answer in dollars, correct to the nearest cent.
		6 [3]
		\$ [3]

(d)	The number of newspapers sold decreases exponentially by $x\%$ each year. Over a period of 21 years the number of newspapers sold decreases from 1763 000 to 58 000.
	Calculate the value of x .
	$x = \dots [3]$
(e)	Every page of the newspaper is a rectangle measuring 43 cm by 28 cm, both correct to the nearest centimetre.
	Calculate the upper bound of the area of a page.
	cm ² [2]

11

The sequence of diagrams above is made up of small lines and dots.

(a) Complete the table.

	Diagram 1	Diagram 2	Diagram 3	Diagram 4	Diagram 5	Diagram 6
Number of small lines	4	10	18	28		
Number of dots	4	8	13	19		

[4]

(b) For Diagram n find an expression, in terms of n, for the number of small lines.

.....[2]

(c) Diagram r has 10300 small lines.

Find the value of r.

 $r = \dots$ [2]

(d)	The number of dots in Diagram n is $an^2 + bn + 1$. Find the value of a and the value of b .		
		<i>a</i> =	
		<i>b</i> =	[2]

1	Here is part of a train timetable for a journey from London to Marseille. All times given are in local time. The local time in Marseille is 1 hour ahead of the local time in London.			
		London	07 19	
		Ashford	07 55	
		Lyon	13 00	
		Avignon	1408	
		Marseill	e 1446	
	(a) (i)	Work out the total journey time from Give your answer in hours and minute		eille.
				h min [2]
	(ii)	The distance from London to Ashford is 90 km. The local time in London is the same as the local time in Ashford.		
Work out the average speed, in km/h, of the			of the train bety	ween London and Ashford.
				km/h [3]
	(iii)	(iii) During the journey, the train takes 35 seconds to completely cross a bridge. The average speed of the train during this crossing is 90 km/h. The length of the train is 95 metres.		
		Calculate the length, in metres, of this	bridge.	

..... m [4]

(b) The fares for the train journey are shown in the table below.

From London to Marseille	Standard fare	Premier fare	
Adult	\$84	\$140	
Child	\$60	\$96	

			<u></u>	<u> </u>	
		Child	\$60	\$96	
(i	i) For the	e standard fare, write the ratio	adult fare : child	fare in its simple	st form.
					:[1]
(ii	i) For an	adult, find the percentage incre	ease in the cost of t	he standard fare to	o the premier fare.
					% [3]
(iii	i) For on	e journey from London to Mars	seille, the ratio		
		number of adults : nu	umber of children =	= 11 : 2.	
	All of	were 220 adults in total on this the children and 70% of the adumaining adults paid the premier	ilts paid the standa	rd fare.	
	Calcul	ate the total of the fares paid by	the adults and the	children.	
				\$	[5]
(c) T	here were his was a	3.08×10^5 passengers that mad 12% decrease in the number of	e this journey in 20 passengers that ma	018. de this journey in	2017.
		mber of passengers that made the nswer in standard form.	nis journey in 2017		
					[3]

10	(a)			19,	15,	11,	7,		
		(i)	Write down the next two ter	ms of th	ne seque	ence.			
		(ii)	Find the <i>n</i> th term of this seq	uence.				,	[2]
		(iii)	Find the value of n when the	e nth ter	m is –6	5.			[2]
	(b)		ther sequence has <i>n</i> th term 2.1 the difference between the 4.2.			5th terr	n of this	$n = \dots$ s sequence.	[2]
									[2]

2	(a)	Ali and Mo share a sum of money in the ratio Ali: Mo = Ali receives \$600 more than Mo.	9:7.
		Calculate how much each receives.	
			Ali \$
			Mo \$ [3]
	(b)	In a sale, Ali buys a television for \$195.80 . The original price was \$220.	
		Calculate the percentage reduction on the original price.	
			04, 503
	(c)	In the sale, Mo buys a jacket for \$63. The original price was reduced by 25%.	% [3]
		Calculate the original price of the jacket.	
			\$[3]

3	(a)	Dina invests \$600 for 5 years at a rate of 2% per year compound in	interest.
		Calculate the value of this investment at the end of the 5 years.	
		· c	[2]
	(b)	The value of a gold ring increases exponentially at a rate of 5% por The value is now \$882.	er year.
		(i) Calculate the value of the ring 2 years ago.	
		\$	[2]
		(ii) Find the number of complete years it takes for the ring's greater than \$1100.	value of \$882 to increase to a value
			[2]

10 (a) Complete the table for the 5th term and the nth term of each sequence.

1st term	2nd term	3rd term	4th term	5th term	nth term
9	5	1	-3		
4	9	16	25		
1	8	27	64		
8	16	32	64		

[11]

(b) 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

This sequence is a Fibonacci sequence.

After the first two terms, the rule to find the next term is "add the two previous terms". For example, 5+8=13.

Use this rule to complete each of the following Fibonacci sequences.

- (c) $\frac{1}{3}$, $\frac{3}{4}$, $\frac{4}{7}$, $\frac{7}{11}$, $\frac{11}{18}$, ...
 - (i) One term of this sequence is $\frac{p}{q}$.

Find, in terms of p and q, the next term in this sequence.

.....[1]

(ii) Find the 6th term of this sequence. [1]

1	(a)	Moh	nsin has 600 pear trees and 720 apple trees on his farm.	
		(i)	Write the ratio pear trees: apple trees in its simplest for	rm.
				: [1]
		(ii)	Each apple tree produces 16 boxes of apples each year. One box contains 18 kg of apples.	
			Calculate the total mass of apples produced by the 720 tree Give your answer in standard form.	ees in one year.
				kg [3]
	(b)	(i)	One week, the total mass of pears picked was 18540 kg. For this week, the ratio mass of apples: mass of pears =	13:9.
			Find the mass of apples picked that week.	
				kg [2]
		(ii)	The apples cost Mohsin \$0.85 per kilogram to produce. He sells them at a profit of 60%.	
			Work out the selling price per kilogram of the apples.	
				\$[2]

(c)	Mohsin exports some of his pears to a shop in Belgium. The shop buys the pears at \$1.50 per kilogram. The shop sells the pears for 2.30 euros per kilogram. The exchange rate is $$1 = 0.92$ euros.	
	Calculate the percentage profit per kilogram made by the shop.	
		% [5]
(d)	Mohsin's earnings increase exponentially at a rate of 8.7% each During 2018 he earned \$195 600.	ı year.
	During 2027, how much more does he earn than during 2018?	
		\$[3]

9			d car B take part in a race around a circular track. If the track measures 7.6 km.	
	Car	B tak	tes 2 minutes and 40 seconds to complete each lap of the traces 2 minutes and 25 seconds to complete each lap of the traces travel at a constant speed.	
	(a)		culate the speed of car A . e your answer in kilometres per hour.	
				km/h [3]
	(b)	Bot	h cars start the race from the same position, S, at the same t	ime.
		(i)	Find the time taken when both $car A$ and $car B$ are next at Give your answer in minutes and seconds.	position S at the same time.
				s [4]
		(ii)	Find the distance that $\operatorname{car} A$ has travelled at this time.	
				km [2]

1	(a)	In a cycling club, the number of members are in the ratio males: females = $8:3$. The club has 342 females.
		(i) Find the total number of members.
		(ii) Find the percentage of the total number of members that are female.
	(b)	
	(c)	\$
		\$[3]

(a)	On the first part of his journey he cycles 60 km in 2 hours 24 minutes. On the second part of his journey he cycles 45 km at 20 km/h.
	Find his average speed for the whole journey.
	km/h [4]
(e)	
	Calculate how much money remains in his account.
	\$ [3]
(f)	The formula $s = \frac{1}{2}at^2$ is used to calculate the distance, s, travelled by a bicycle.
	When $a = 3$ and $t = 10$, each correct to the nearest integer, calculate the lower bound of the distance, s.
	[2]

(a)	A sh	op sells dress fabric for \$2.97 per metre.	
	(i)	A customer buys 9 metres of this fabric.	
		Calculate the change he receives from \$50.	
		\$	[2]
	(ii)	The selling price of \$2.97 per metre is an increase of 8% on the	e cost price.
		Calculate the cost price.	
		\$	g per metre [3]
(b)	A dr	ressmaker charges \$35 or 2300 rupees to make a dress.	
		rulate the difference in price when the exchange rate is 1 rupee	= \$0.0153 .
	GIV	e your answer in rupees.	
			rupees [2]
(c)	The	dressmaker measures a length of fabric as 600 m, correct to the	nearest 5 metres.
	He	euts this into dress lengths of 9 m, correct to the nearest metre.	
	Calc	culate the largest number of complete dress lengths he could cut.	
			гол
			[3]

11 The table shows the first five terms of sequences A, B and C.

Sequence	1st term	2nd term	3rd term	4th term	5th term	6th term
A	0	1	4	9	16	
В	4	5	6	7	8	
С	-4	-4	-2	2	8	

(a)	Con	nplete the table.		[3]
(b)	Find	d an expression for the <i>n</i> th term of		
	(i)	sequence A ,		
				[2]
	(ii)	sequence B.		
(c)	Find	If the value of n when the n th term of sequence A is 576.		[1]
(-)				
			<i>n</i> =	[2]
(d)	(i)	Find an expression for the <i>n</i> th term of sequence <i>C</i> . Give your answer in its simplest form.		
				.
	(ii)	Find the value of the 30th term of sequence C .		[3]
				[2]
				[4]

Ade	ele, Barbara and Collette share \$680 in the ratio 9:7:4.	
(a)	Show that Adele receives \$306.	
(b)	Calculate the amount that Barbara and Collette each receives.	[1]
	Barbara \$	
	Collette \$	[3]
(c)	Adele changes her \$306 into euros (\mathfrak{E}) when the exchange rate is $\mathfrak{E}1 = \$1.125$.	
	Calculate the number of euros she receives.	
	ϵ	[2]
(d)	Barbara spends a total of \$17.56 on 5 kg of apples and 3 kg of bananas. Apples cost \$2.69 per kilogram.	
	Calculate the cost per kilogram of bananas.	
	\$	[3]
(e)	Collette spends half of her share on clothes and $\frac{1}{5}$ of her share on books.	
	Calculate the amount she has left.	
	\$	[3]

3	(a)	The price of a house decreased from \$82 500 to \$77 500.
		Calculate the percentage decrease.
		% [3]
	(b)	Roland invests \$12 000 in an account that pays compound interest at a rate of 2.2% per year.
		Calculate the value of his investment at the end of 6 years. Give your answer correct to the nearest dollar.
		\$ [3]

	Thi	his was an increase of 6% on the fee in 2016.	
	Cal	alculate the fee in 2016.	
		\$	[3]
(b)		n one day, the number of members using the exercise machines was 40, co ach member used a machine for 30 minutes, correct to the nearest 5 minutes	
	Cal	alculate the lower bound for the number of minutes the exercise machines	were used on this day.
			min [2]
(c)	On	n another day, the number of members using the exercise machines (E) , the	ne swimming pool (S) and
(0)		the tennis courts (T) is shown on the Venn diagram.	ie swiming poor (s) and
		8	٦
		E S	
		$ \left(\begin{array}{ccc} 20 & \left(5 \right) & 33 \end{array} \right) $	
		7 4 8	
		16	
		T	
	(i)) Find the number of members using only the tennis courts.	
			[1]
			[1]
	(ii)) Find the number of members using the swimming pool.	
			[1]
	(iii)) A member using the swimming pool is chosen at random.	
		Find the probability that this member also uses the tennis courts and the	e exercise machines.
			[2]
	(iv)) Find $n(T \cap (E \cup S))$.	
			[1]

10 (a) In 2017, the membership fee for a sports club was \$79.50.

12 Marco is making patterns with grey and white circular mats.

The patterns form a sequence.

Marco makes a table to show some information about the patterns.

Pattern number	1	2	3	4	5
Number of grey mats	6	9	12	15	
Total number of mats	6	10	15	21	

(a)	Complete the table for Pattern 5.	[2]
(b)	Find an expression, in terms of n , for the number of grey mats in Pattern n .	
		[2]
(c)	Marco makes a pattern with 24 grey mats.	
	Find the total number of mats in this pattern.	

 	 [2]

(d)	Marco needs a total of 6 mats to make the first pattern. He needs a total of 16 mats to make the first two patterns. He needs a total of $\frac{1}{6}n^3 + an^2 + bn$ mats to make the first n patterns
	Find the value of a and the value of b .

		260g of butter 500g of sugar 650g of flour 425g of rice	
(i)	Find the mass of rice as a p	percentage of the mass of sug	gar.
(ii)	Find the mass of butter nee	eded to make 35 of these bise	% [1]
(iii)	Michel has 2 kg of each ing Work out the greatest number	gredient. ber of these biscuits that he	g [2] an make.
	ompany makes these biscuits		[3]
(i)	Calculate the percentage pr	rofit the company makes on	each packet.
(ii)	The selling price of \$1.89 l	nas increased by 8% from la last year.	% [3]
			\$[3]

(a) Here is a list of ingredients to make 20 biscuits.

(c)	20.8	a period of 3 years, the comillion packets. ales increased exponentially			nillion packets to
	Calcu	ılate the percentage increase	e each year.		
					% [3]
(d)	The p	people who work for the con	npany are in the following	age groups.	
		Group A	Group B	Group C	
		Under 30 years	30 to 50 years	Over 50 years	
		atio of the number in group atio of the number in group			
		Find the ratio of the number Give your answer in its simp		in group C.	
				:	[3]
	(ii)	There are 45 people in grou	p C.		
		Find the total number of peo	ople who work for the con	npany.	
					[3]

	(i)	She buys a jacket for \$40 and sells it for \$45.40.	
		Calculate the percentage profit.	
		% [3]	
	(ii)	She sells a dress for \$42.60 after making a profit of 20% on the cost price.	
		Calculate the cost price.	
		\$ [3]	
(b)	Sara		
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)			
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	
(b)		a invests \$500 for 15 years at a rate of 2% per year simple interest.	

(a) Rowena buys and sells clothes.

(c)	(c) Tomas has two cars.				
	(i)	The value, today, of one car is \$21 000. The value of this car decreases exponentially by 18% each year.			
		Calculate the value of this car after 5 years. Give your answer correct to the nearest hundred dollars.			
		\$ [3]			
	(ii)	The value, today, of the other car is \$15000. The value of this car increases exponentially by $x\%$ each year. After 12 years the value of the car will be \$42190.			
		Calculate the value of x .			
		$x = \dots [3]$			

(a)	The	selling price of each photo is \$6.	
	(i)	The selling price for each photo is made up of two parts, printing cost and profit. For each photo, the ratio printing cost: $profit = 5:3$.	
		Calculate the profit she makes on each photo.	
	(;;)	\$.]
	(ii)	Calculate her profit as a percentage of the selling price.	
		% [1]
	(iii)	Calculate the selling price of a photo in euros (ϵ) when the exchange rate is $\epsilon 1 = 1.091$.	
			_
		€	.]
(b)	The	rianne sells two sizes of photo. se photos are mathematically similar rectangles. smaller photo has length 15 cm and width 12 cm.	
		larger photo has area 352.8 cm ² .	
	Calo	culate the length of the larger photo.	
		cm [3]
(c)		sale, Marianne buys a new camera for \$483.	
		s is a reduction of 8% on the original price. culate the original price of the camera.	
	Call	culate the original price of the camera.	
			7
		\$ [3]

Marianne sells photos.

(a)

The Venn diagram above shows information about the number of students who study Music (M), Drama (D) and Geography (G).

How many students study Music?

 Γ1	٦
 L	1

How many students study exactly two subjects? (ii)

Two students are chosen at random from those who study Drama. (iii)

Calculate the probability that they both also study Music.

.....[3]

(iv) In the Venn diagram above, shade $M \cap D'$.

[1]

(b) (i) $\mathscr{E} = \{x : x \text{ is an integer and } 1 \le x \le 10\}$

$$A = \{x : x \text{ is even}\}$$

$$4 \in A \cap B$$

$$n(A \cap B) = 1$$

$$(A \cup B)' = \{1, 7, 9\}$$

Complete the Venn diagram below using this information.

[4]

(ii) Use your Venn diagram to complete the statement.

$$B = \{\dots \}$$

(a)	The	Muller family are on holiday in New Zealand.
	(i)	They change some euros (ϵ) and receive \$1962 (New Zealand dollars). The exchange rate is ϵ 1 = \$1.635.
		Calculate the number of euros they change.
		€[2]
	(ii)	The family spend 15% of their New Zealand dollars on a tour.
		Calculate the number of dollars they have left.
		\$[2]
	(iii)	The family visit two waterfalls, the Humboldt Falls and the Bridal Veil Falls. The ratio of the heights Humboldt Falls: Bridal Veil Falls = 5:1. The Humboldt Falls are 220 m higher than the Bridal Veil Falls.
		Calculate the height of the Humboldt Falls.
		m [2]

(b)	(i)	Water flows over the Browne Falls at a rate of 3680 litres per second. After rain, this rate increases to 9752 litres per second.
		Calculate the percentage increase in this rate.
		% [3]
	(ii)	After rain, water flows over the Sutherland Falls at a rate of 74240 litres per second. This is an increase of 45% on the rate before the rain.
		Calculate the rate before the rain.
		litres/second [3]

2	(a)		hool has 240 students. ratio girls: boys = 25:23.
		(i)	Show that the number of boys is 115.
			[1]
		(ii)	One day, there are 15 girls absent and 15 boys absent.
			Find the ratio girls: boys in school on this day. Give your answer in its simplest form.
			: [2]
		(iii)	Next year, the number of students will increase by 15%.
			Calculate the number of students next year.
			[2]
		(iv)	Since the school was opened, the number of students has increased by 60%. There are now 240 students.
			Calculate the number of students when the school was opened.
			[3]

(b)	The population of a city is increasing exponentially at a rate of 2% each year. The population now is 256000.
	Calculate the population after 30 years. Give your answer correct to the nearest thousand.
	[3]
(c)	A bacteria population increases exponentially at a rate of $r\%$ each day. After 32 days, the population has increased by 309%.
	Find the value of r .
	r = [3]
	, –[3]

10	(a)	Find	the next	term an	d the nth	term of	this seq	uence.			
					$\frac{3}{5}$,	$\frac{4}{7}$,	$\frac{5}{9}$,	$\frac{6}{11}$,	$\frac{7}{13}$,		
									Next term =	:	
									nth term =	:[[3]
	(b)	Find	the nth t	term of	each sequ	uence.					
		(i)	-1,	-3,	-5,	-7,	-9,				
		(ii)	2,	9,	28,	65,	126,			[[2]
										[[2]

		smith family paid \$5635 for a holiday in India. total cost was divided in the ratio travel: accommodation: entertainment = 10:17:8.
(2	1)	Calculate the percentage of the total cost spent on entertainment.
		% [2]
a	•)	Show that the amount spent on accommodation was \$2737.
(1	"	Show that the amount spent on accommodation was \$2737.
		[2]
(The \$5635 was the total amount Mr Smith received from an investment he made 5 years ago.
(•	:)	Compound interest at a rate of 2.42% per year was paid on this investment.
		Calculate the amount he invested 5 years ago.
		\$[3]
(0	l)	Mr Smith, his wife and their three children visit a theme park.
		The tickets cost 2500 Rupees for an adult and 1650 Rupees for a child.
		Calculate the total cost of the tickets.
		Rupees [2]
(6	e)	One day the youngest child spent 130 Rupees on sweets.
		On this day the exchange rate was 1 Rupee = \$0.0152.
		Calculate the value of the sweets in dollars, correct to the nearest cent.
		\$[2]

1 An energy company charged these prices in 2013.

Electricity price	Gas price				
23.15 cents per day plus 13.5 cents for each unit used	24.5 cents per day plus 5.5 cents for each unit used				

			13.5 cents for each unit used	5.5 cents for each unit u	sed
(a)	(i)		days, the Siddique family used 1885 ulate the total cost, in dollars, of the ele	-	
	(ii)		days, the gas used by the Khan family ulate the number of units of gas used.		[2]
(b)	Ove	r the n	he price for each unit of electricity was next 3 years, this price increased expon the price for each unit of electricity aft	13.5 cents. entially at a rate of 8% per	units [3] year.
(c)	Ove		e 3 years, the price for each unit of gas ulate the percentage increase from 5.5	increased from 5.5 cents to	cents [2] to 7.7 cents.
					% [3]

	(ii)	Over the 3 years, the 5.5 cents increased exponentially 7.7 cents.	by t	the same	percentage	each	year	to
		Calculate the percentage increase each year.						
							. %[[3]
(d)	In 2	015, the energy company divided its profits in the ratio						
		shareholders: bonuses: development $= 5:2:6$.						
	In 2	015, its profits were \$390 million.						
	Calo	culate the amount the company gave to shareholders.						
			\$	S		mil	lion [[2]
(e)		share price of the company in June 2015 was \$258.25. s was an increase of 3.3% on the share price in May 2015.						
	Calo	culate the share price in May 2015.						
			\$	S			[3]
							٠	•

(a)	The	nth term	of a sec	quence i	8n-3	,			
	(i)	Write d	lown the	first two	o terms	of this sec	quence.		
	(ii)	Show the	hat the n	umber 2	203 is no	t in this s	equence.		[1]
									[2]
(b)	Fin	d the <i>n</i> th	term of	these se	quences				
	(i)	13,	19,	25,	31,	•••			
									[2]
	(ii)	4,	8,	14,	22,				
									[2]
(c)					,	20,	50,	•••	
						20 and the this seque			then multiply by 5.
	Fin	d the valu	ue of y a	nd work	out the	first term	of this s	equence.	
									<i>y</i> =
								First te	rm =[4]

1	(a)	Ann	tie and Dermot share \$600 in the ratio 11:9.
		(i)	Show that Annie receives \$330.
			[1]
		(ii)	Find the amount that Dermot receives.
			\$[1]
	(b)	(i)	Annie invests \$330 at a rate of 1.5% per year compound interest.
			Calculate the amount that Annie has after 8 years. Give your answer correct to the nearest dollar.
			\$[3]
		(ii)	Find the amount of interest that Annie has, after the 8 years, as a percentage of the \$330.
		(11)	Time the amount of interest that ranne has, after the 6 years, as a percentage of the \$550.
			% [2]

(c)		mot has \$70 to spend. spends \$24.75 on a shirt.
	(i)	Find \$24.75 as a fraction of \$70. Give your answer in its lowest terms.
		[1]
	(ii)	The \$24.75 is the sale price after reducing the original price by 10%.
		Calculate the original price.
		\$[3]
(d)	At t	er one year, the value of Annie's car had reduced by 20%. the end of the second year, the value of Annie's car had reduced by a further 15% of its value at the of the first year.
	(i)	Calculate the overall percentage reduction after the two years.
		% [2]
	(ii)	After three years the overall percentage reduction in the value of Annie's car is 40.84%.
		Calculate the percentage reduction in the third year.
		% [2]

1	(a)	In 20	016, a company sold 9600 cars, correct to the nearest hundre	d.
		(i)	Write down the lower bound for the number of cars sold.	
				[1]
		(ii)	The average profit on each car sold was \$2430, correct to the	ne nearest \$10.
			Calculate the lower bound for the total profit. Write down the exact answer.	
			write down the exact answer.	
				\$[2]
		(iii)	Write your answer to part (a)(ii) correct to 4 significant fig	gures.
				\$ [1]
		(iv)	Write your answer to part (a)(iii) in standard form.	
				\$[1]
	<i>a</i> >	T 4		\$[1]
	(b)		pril, the number of cars sold was 546. was an increase of 5% on the number of cars sold in March	
		Calc	culate the number of cars sold in March.	
				[3]
(0			ice of a new car grows exponentially by 3% per year. car has a price of \$3000 in 2013.	
	I	ind th	ne price of a new car 4 years later.	
				\$ [2]

10

 $\mathscr{E} = \{21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}$

 $A = \{ x : x \text{ is a multiple of 3} \}$

 $B = \{ x : x \text{ is prime} \}$

 $C = \{ x : x \le 25 \}$

(a) Complete the Venn diagram.

[4]

(b) Use set notation to complete the statements.

(ii)
$$A \cap B = \dots$$

[1]

(c) List the elements of $B \cup (C \cap A)$.

ra-
 17
 12

(d) Find

(i) n(C),

.....[1]

(ii) $n(B' \cup (B \cap C))$.

.....[1]

(e) $(A \cap C)$ is a subset of $(A \cup C)$.

Complete this statement using set notation.

 $(A \cap C)$ $(A \cup C)$ [1]

11 The table shows the first four terms in sequences A, B, C and D.

Complete the table.

Sequence	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
A	16	25	36	49		
В	5	8	11	14		
С	11	17	25	35		
D	$\frac{3}{2}$	$\frac{4}{3}$	<u>5</u>	$\frac{6}{5}$		

[12]

1	(a)	A library has a total of 10 494 fiction and non-fiction books. The ratio fiction books: non-fiction books = 13:5.
		Find the number of non-fiction books the library has.
		[6]
	a >	[2]
	(b)	The library has DVDs on crime, adventure and science fiction. The ratio crime: adventure: science fiction = 11:6:10.
		The library has 384 more science fiction DVDs than adventure DVDs.
		Calculate the number of crime DVDs the library has.
		[2]
	(c)	Every Monday, Sima travels by car to the library.
	()	The distance is 20 km and the journey takes 23 minutes.
		(i) Calculate the average speed for the journey in kilometres per hour.
		km/h [2]
		(ii) One Monday, she is delayed and her average speed is reduced to 32 km/h.
		Calculate the percentage increase in the journey time.
		% [5]

(d)	In Spain, the price of a book is 11.99 euros. In the USA, the price of the same book is \$12.99. The exchange rate is $$1 = 0.9276$ euros.
	Calculate the difference between these prices. Give your answer in dollars, correct to the nearest cent.
	\$[3]
(e)	7605 books were borrowed from the library in 2016. This was 22% less than in 2015.
	Calculate the number of books borrowed in 2015.
	[3]

6

These are the first four diagrams in a sequence. Each diagram is made from small squares and crosses.

(a) Complete the table.

Find the value of q.

Diagram	1	2	3	4	5	n
Number of crosses	6	10	14			
Number of small squares	2	5	10			

		[6]
(b)	Find the number of crosses in Diagram 60.	
		[1]
(c)	Which diagram has 226 squares?	
		Diagram[1]
(d)	The side of each small square has length 1 cm. The number of lines of length 1 cm in Diagram n is	$2n^2 + 2n + a.$

q =[2]

1	(a)	Alex	x has \$20 and Bobbie has \$25.
		(i)	Write down the ratio Alex's money: Bobbie's money in its simplest form.
		(ii)	
		(iii)	
	(b)	(i)	:[2] The population of a town in the year 1990 was 15600. The population is now 11420. Calculate the percentage decrease in the population.
		(ii)	% [3] The population of 15 600 was 2.5% less than the population in the year 1980. Calculate the population in the year 1980.
			[3]

(c)	Chris invests \$200 at a rate of $x\%$ per year simple interest. At the end of 15 years the total interest received is \$48.	
	Find the value of x .	
		<i>x</i> =[2]
(d)	Dani invests \$200 at a rate of $y\%$ per year compound interest. At the end of 10 years the value of her investment is \$256.	
	Calculate the value of y, correct to 1 decimal place.	
		<i>y</i> =[3]

3 The graph shows information about the journey of a train between two stations.

(a) (i) Work out the acceleration of the train during the first 4 minutes of this journey. Give your answer in km/h^2 .

	km/h ²	[2]
•••••	KIII/II	[4]

(ii) Calculate the distance, in kilometres, between the two stations.

.....km [4]

		[1]
	(ii)	The train has a total length of 220 m. At 09 30, the train crossed a bridge of length 1400 m.
		Calculate the time, in seconds, that the train took to completely cross the bridge.
		s [3]
(c)		a different journey, the train took 73 minutes, correct to the nearest minute, to travel 215 km, correct ne nearest 5 km.
		culate the upper bound of the average speed of the train for this journey. e your answer in km/h.
		1 /1- [4]
		km/h [4]

(b) (i) Show that 126 km/h is the same speed as 35 m/s.

10	(a)	(i)	Write 180 as a product of its prime factors.
		(ii)	Find the lowest common multiple (LCM) of 180 and 54.
			[2]
	(b)	An An	integer, X , written as a product of its prime factors is $a^2 \times 7^{b+2}$. integer, Y , written as a product of its prime factors is $a^3 \times 7^2$.
			highest common factor (HCF) of X and Y is 1225. lowest common multiple (LCM) of X and Y is 42 875.
		Fine	d the value of X and the value of Y .
			X=
			Y =[4]

1	Aas	sha, Biren and Cemal share \$640 in the ratio 8:15:9.	
	(a)	Show that Aasha receives \$160.	
			[1]
	(b)	Calculate the amount that Biren and Cemal receive.	
		Riren	\$
			\$[2]
	(c)	Aasha uses her \$160 to buy some books.	
	(c)	Each book costs \$15.25.	
		Find the greatest number of books that she can buy.	
			701
	(d)	Biren spends $\frac{3}{8}$ of his share on clothes and $\frac{1}{3}$ of his share on a co	[2]
	()	Find the fraction of his share that he has left.	
		Write your fraction in its lowest terms.	
			[3]

3	(a)	Davinder asked some people if they ate mangoes, pineapples or bananas last week.	
		$M = \{ \text{ people who ate mangoes } \}$ $P = \{ \text{ people who ate pineapples } \}$ $B = \{ \text{ people who ate bananas } \}$	
		The Venn diagram shows some of the information.	
		19 people said they ate mangoes. 6 people said they ate only pineapples. 18 people said they ate exactly two of the three types of fruit.	
		(i) Write the three missing values in the Venn diagram.	[3]
		(ii) Find the total number of people Davinder asked.	
			[1]
	((iii) Find $n(M \cap P)$.	
			[1]
		(iv) One person is chosen at random from the people who ate mangoes.	
		Write down the probability that this person also ate bananas.	

.....[2]

(b) Davinder draws a speed-time graph for his bus journey to the market.

Find

(i) the acceleration of the bus during the first 200 seconds,

	m/s^2	Г11
• • • • • • • • • • • • • • • • • • • •	111/5	LTJ

(ii) the total distance travelled by the bus,

..... m [3]

 $\begin{tabular}{ll} \textbf{(iii)} & the average speed of the bus for the whole journey. \\ \end{tabular}$

..... m/s [1]

5	(a)	Meena sells her car for \$6000. This is a loss of 4% on the price she paid.		
		Calculate the price Meena paid for the car.		
			\$	[3]
	(b)	Eisha changes some euros (\mathcal{E}) into dollars $(\$)$ when the exchange She receives $\$6000$.	rate is $\ε 1 = \$1.351$.	
		Calculate how many euros Eisha changes. Give your answer correct to the nearest euro.		
			€	[3]
	(c)	Meena and Eisha both invest their \$6000. Meena invests her \$6000 at a rate of 1.5% per year compound interests her \$6000 in a bank that pays simple interest. After 8 years, their investments are worth the same amount.	terest.	
		Calculate the rate of simple interest per year that Eisha received.		
			%	[5]

1	(a)		stian and Stephanie share some money in the ratio 3:2. stian receives \$72.	
		(i)	Work out how much Stephanie receives.	
				\$[2]
		(ii)	Kristian spends 45% of his \$72 on a computer game.	
			Calculate the price of the computer game.	
				\$[1]
		(iii)	Kristian also buys a meal for \$8.40.	
			Calculate the fraction of the \$72 Kristian has left after buying Give your answer in its lowest terms.	ng the computer game and the meal.
				[2]
		(iv)	Stephanie buys a book in a sale for \$19.20. This sale price is after a reduction of 20%. Calculate the original price of the book.	
				\$[3]

(b)	Boris invests \$550 at a rate of 2% per year simple interest.
	Calculate the amount Boris has after 10 years.
	\$[3]
(c)	Marlene invests \$550 at a rate of 1.9% per year compound interest.
	Calculate the amount Marlene has after 10 years.
	\$[2]
(d)	Hans invests \$550 at a rate of $x\%$ per year compound interest. At the end of 10 years he has a total amount of \$638.30, correct to the nearest cent.
	Find the value of x .
	x = [3]

		flies from London to Los Angeles, a distance of 8800 km. at takes 11 hours and 10 minutes.
(a)	(i)	His plane leaves London at 0935 local time. The local time in Los Angeles is 8 hours behind the time in London.
		Calculate the local time when the plane arrives in Los Angeles.
	(ii)	Work out the average speed of the plane in km/h. [2]
		km/h [2]
(b)		ere are three types of tickets, economy, business and first class. The price of these tickets is in the ratio economy: business: first class = 2:5:9.
	(i)	The price of a business ticket is \$2350.
		Calculate the price of a first class ticket.
		\$[2]
	(ii)	Work out the price of an economy ticket as a percentage of the price of a first class ticket.
		% [1]
(c)	The	e price of a business ticket for the same journey with another airline is \$2240.
	(i)	The price of a first class ticket is 70% more than a business ticket.
		Calculate the price of this first class ticket.
		\$[2]
		[<u>-</u>]

	(ii)	The price of a business ticket is 180% more than an economy ticket.
		Calculate the price of this economy ticket.
		\$[3]
(d)		Chan hires a car in Los Angeles. charges are shown below.
		<u>Car Hire</u>
		\$28.00 per day plus \$6.50 per day insurance.
		\$1.25 for every kilometre travelled after the first 800 km. The first 800 km are included in the price.
	Mr	Chan hired the car for 12 days and paid \$826.50.
	(i)	Find the number of kilometres Mr Chan travelled in this car.
		km [4]
	(ii)	The car used fuel at an average rate of 1 litre for every 10 km travelled. Fuel costs \$1.30 per litre.
		Calculate the cost of the fuel used by the car during the 12 days.
		\$[2]

A fo	otbal	ll club sells tickets at different prices dependent on age group.
(a)	(i)	At one game, the club sold tickets in the ratio
		under $18:18 \text{ to } 60: \text{ over } 60 = 2:7:3.$
		There were 6100 tickets sold for people aged under 18.
		Calculate the total number of tickets sold for the game.
		T03
		[3]
	(ii)	Calculate the percentage of tickets sold for people aged under 18.
		% [1]
(b)	The	table shows the football ticket prices for the different age groups.
	(a)	(a) (i)

Age	Price
Under 18	\$15
18 to 60	\$35
Over 60	\$18

At a different game there were 42 600 tickets sold.

- 14% were sold to people aged under 18
- $\frac{2}{3}$ of the tickets were sold to people aged 18 to 60
- The remainder were sold to people aged over 60

Calculate the total amount the football club receives from ticket sales for this game.

Φ	F = 1
٠,٦	 1.0

(c)	In a sale, the football club shop reduced the price of the football shirts to \$23.80 . An error was made when working out this sale price. The price was reduced by 30% instead of 20%.
	Calculate the correct sale price for the football shirt.
	\$[5]

Each diagram is made from tiles in the shape of equilateral triangles and rhombuses. The length of a side of each tile is 1 unit.

(a) Complete the table below for this sequence of diagrams.

Diagram	1	2	3	4	5
Number of equilateral triangle shaped tiles	2	3	4	5	6
Number of rhombus shaped tiles	1	3	6		
Total number of tiles	3	6	10		
Number of 1 unit lengths	8	15	24		

[6]

(b) (i) The number of 1 unit lengths in Diagram n is $n^2 + 4n + p$. Find the value of p.

	_	Γ'	1	٦	ı
p		 ŀ	_	ı	ı

(ii) Calculate the number of 1 unit lengths in Diagram 10.

.....[1]

(c)	The	total number of tiles in Diagram n is $an^2 + bn + 1$.
	Fine	d the value of a and the value of b .
		a =
		<i>b</i> =[5]
(d)		t of the Louvre museum in Paris is in the shape of a square-based pyramid made from glass tiles. In of the triangular faces of the pyramid is represented by Diagram 17 in the sequence.
	(i)	Calculate the total number of glass tiles on one triangular face of this pyramid.
		[2]
	(ii)	11 tiles are removed from one of the triangular faces to create an entrance into the pyramid.
		Calculate the total number of glass tiles used to construct this pyramid.
		[1]

1	(a)	(i)	Divide \$105 in the ratio 4:3.		
		(ii)	Increase \$105 by 12%.	\$ and \$	[2]
		(iii)	In a sale the original price of a jacket is reduced by 16% to Calculate the original price of the jacket.	\$ o \$105.	[2]
	(b)	Clau	b invests \$500 at a rate of 2% per year compound interest. Idia invests \$500 at a rate of 2.5% per year simple interest.	\$	[3]
			evulate the difference between these two investments after 30 to your answer in dollars correct to the nearest cent.) years.	
				\$	[6]

(c)	Michel invests P at a rate of 3.8% per year compound interest. After 30 years the value of this investment is \$1469.	
	Calculate the value of P .	
		<i>P</i> =[3]
(d)	The population of a city increases exponentially at a rate of $x\%$ e In 1960 the population was 60 100. In 2015 the population was 120 150.	very 5 years.
	Calculate the value of x .	
		<i>x</i> =[3]

1	(a)	(i)	Each year the value of a car decreases by 15% of its value at the beginning of that year. Alberto buys a car for \$18000.
			Calculate the value of Alberto's car after 3 years.
		(**)	\$[2]
		(ii)	Belinda bought a car one year ago. The value of this car has decreased by 15% to \$14025.
			Calculate how much Belinda paid for the car.
			\$[3]
	(b)	Chr	is invested some money at a rate of 5% per year compound interest.
	(0)		er 2 years the value of this investment is \$286.65.
		Calo	culate how much Chris invested.
			\$[2]
			Ψ[2]

(c)	Dani invested \$200 and after 2 years the value of this investment is \$224.72.							
	Calculate the rate of interest per year when the interest is							
	(i)	simple,						
	(**)		% [3]					
	(ii)	compound.						
			% [3]					

1	(a)		jigsaw puzzle has edge pieces and inside pieces. e ratio edge pieces : inside pieces = 3 : 22.	
		(i)	There are 924 inside pieces.	
			Calculate the total number of pieces in the puzzle.	
				[2]
		(ii)	Find the percentage of the total number of pieces that are edge pieces.	
				%[1]
		(iii)	Anjum and Betty spent a total of 9 hours completing the puzzle. The ratio Anjum's time: Betty's time = 7:5.	
			Work out how much time Anjum spent on the puzzle.	
			ho	ours [2]
	(b)		the price of the puzzle was \$15.99 in a sale. sis was 35% less than the original price.	
		Calo	lculate the original price of the puzzle.	
			¢.	[2]
			\$	[3]

(c)	Betty takes a photograph of the completed puzzle. The photograph and the completed puzzle are mathematically similar.							
		The area of the photograph is 875 cm ² and the area of the puzzle is 2835 cm ² . The length of the photograph is 35 cm.						
	Wor	rk out the length of the puzzle.						
			cm [3]					
(d)	(i)	The area of another puzzle is 6610 cm ² .						
		Change 6610 cm ² into m ² .						
			•					
			m ² [1]					
	(ii)	The cost price of this puzzle is \$12.50. The selling price is \$18.50.						
		Calculate the percentage profit.						
			0/ 503					
			% [3]					

10 (a) Complete the table for the four sequences A, B, C and D.

		Sequ	ence		Next term	nth term
Α	2	5	8	11		
В	20	14	8	2		
С	1	4	9	16		
D	0	2	6	12		

П	П	U	П	
L	•	v	IJ	

- **(b)** The sum of the first *n* terms of a sequence is $\frac{n(3n+1)}{2}$.
 - (i) When the sum of the first *n* terms is 155, show that $3n^2 + n 310 = 0$.

(ii) Solve $3n^2 + n - 310 = 0$.

$$n = \dots$$
 or $n = \dots$ [3]

(iii) Complete the statement.

The sum of the first terms of this sequence is 155. [1]

Mathematics Paper 4

Numbers

ANSWERS

1(a)(i)	295	2	M1 for [87 +] 4 × 52 oe
1(a)(ii)	29.5 or 29.49	1	FT $\frac{87}{their(\mathbf{a})(\mathbf{i})} \times 100$
1(b)	11	2	M1 for $18 \times 4 [\pm 61]$ oe
1(c)	4160 cao nfww	2	M1 for 64 ÷ 0.0154 or B1 for rounding <i>their</i> answer to nearest
1(d)	2.4[0] nfww	2	M1 for $\left(1 + \frac{12.5}{100}\right)x = 2.7[0]$ oe
1(e)	53:36	3	M2 for 265: 180 oe or for answer 36: 53 or 53 min: 36 min or M1 for 4h 25 [mins] or 265 [mins] seen
1(f)	6[.00] or 5.999	3	M2 for $\sqrt[5]{\frac{736}{550}}$ or M1 for 736 = 550 × (x) ⁵
3(a)	187	2	M1 for $220 \times \left(1 - \frac{15}{100}\right)$ oe or B1 for 33 seen
7(b)	4.8	3	M1 for $y = \frac{k}{x^2}$ or better M1 for $[y =] \frac{their k}{5^2}$ OR M2 for $y \times 5^2 = 7.5 \times 4^2$
7(c)(i)	6-2n oe final answer	2	B1 for answer $6 - kn$ $(k \neq 0)$ oe or answer $j-2n$ oe or for correct expression shown in working and then spoilt
7(c)(ii)	$2n^2 - 1$ oe final answer	2	B1 for 2nd diff = 4 or a quadratic expression or for correct expression shown in working and then spoilt

9(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	B2 for 5 correct entries including '2' correctly placed at the intersection of the 3 sets or M1 for $k+8-k+3-k+6-k=40-(7+9+11)$ oe or for $k, 8-k, 3-k, 6-k$, seen correctly placed on diagram with 7, 11 and 9 correctly placed
9(b)	11	1	
9(c)	Ø or { }	1	
10(c)	0.6934 final answer	3	B2 for 0.69336 or $3^{-\frac{1}{3}}$ oe or 0.693 or M1 for $3^{-3^{-x}}$ oe

1(a)(i)	7680	2	M1 for 0.24 × 32 000 oe
1(a)(ii)	34 240	2	M1 for $32\ 000 \times \frac{100 + 7}{100}$ oe
1(b)	5306.04	2	M1 for $5000 \times \left(1 + \frac{2}{100}\right)^3$ oe
1(c)	26.7 or 26.66 to 26.67	4	B3 for 96 or $\frac{96}{360}$ oe OR M3 for $(1 - \frac{1}{5}) \times (1 - \frac{2}{3}) \times 100$ oe or M2 for $(1 - \frac{1}{5})$ and $(1 - \frac{2}{3})$ oe OR M1 for $360 \div 5 \times 4$ oe M1 for their $288 \div 3 \times 2$
1(d)	33 500	2	M1 for $36515 \div \frac{100+9}{100}$ oe
1(e)	6525	4	M3 for $\left(\frac{65}{45} - \frac{63}{45}\right)[A] = 290$ oe or M2 for $\left(\frac{13}{9} - \frac{7}{5}\right)[A] = 290$ oe or M1 for correct attempt to convert to a common ratio value for Arjun or for $\frac{13}{9} - \frac{7}{5}$ oe
5(a)	Correct Venn diagram 49 45 48 46 46 50	3	B2 for 8 or 9 numbers correct or B1 for 6 or 7 numbers correct
5(b)(i)	41, 43, 47	1	FT their Venn diagram
5(b)(ii)	44, 46, 49, 50	1	FT their Venn diagram
5(c)	0	1	FT their Venn diagram

			T .
1(a)(i)	14, 10	2	M1 for $24 \div (7 + 5)$
1(a)(ii)	$\frac{3}{350}$	2	B1 for correct fraction not in lowest terms
1(a)(iii)	120	1	
1(b)(i)	10.2[0]	2	M1 for $\frac{15}{100} \times 12$ oe or better
1(b)(ii)	45	2	M1 for $\frac{38.25}{1 - \frac{15}{100}}$ oe
1(c)(i)	85	2	M1 for $\frac{500 \times 1.7 \times 10}{100}$ oe
1(c)(ii)	203 or 202.5 to 202.6	2	M1 for $200 \times \left(1 + \frac{0.0035}{100}\right)^{365}$
1(c)(iii)	1.9	3	M2 for $\sqrt[6]{\frac{559.78}{500}}$ or M1 for $500\left(1 + \frac{r}{100}\right)^6 = 559.78$
1(a)	1260	2	N/1 C 15 v 54 + 25 v 10
1(a)	1280	2	M1 for $15 \times 54 + 25 \times 18$
1(b)	38 800	2	M1 for 37054 ÷ $\left(1 - \frac{4.5}{100}\right)$ oe
1(c)(i)	15:12:28	2	M1 for correct attempt to find a common multiple for the women oe
1(c)(ii)	216	3	M2 for 224 ÷ their 28 × their (15 + 12) or M1 for 224 ÷ their 28
1(d)	55.25	2	M1 for $8 + 0.5$ or $6 + 0.5$ seen
1(e)	156 or 156.3	2	M1 for $\left(1 + \frac{1.5}{100}\right)^{30}$

2	M1 for 2:10:24 or 7:35:84 or $\frac{1}{18}:\frac{5}{18}:\frac{12}{18}$
3	B2 for 266 or 95 or 266 and 95 reversed or M1 for $\frac{114}{6}$
2	M1 for $\frac{114-96.9}{114}$ [× 100] oe or $\frac{96.9}{114}$ ×100
1	
2	M1 for 1802 ÷ their 2h 50min
2	B1 for 3, 4 or 5 correct
1	
1	
2	M1 for $\frac{1}{2}(3n^2-n)-n^2$ oe or for final quadratic answer with $\frac{1}{2}n^2$ oe
	or $-\frac{1}{2}n^2$ oe but not both
5	B2 for 2 correct equations eg $a + b = 1$, $8a + 4b = 6$ or B1 for 1 correct equation B2 for one correct value or M1 (dep on at least B1) for correctly eliminating one variable from two linear equations in a and b OR B2 for $a = \frac{1}{2}$ or B1 for $6a = 3$ or for 3^{rd} difference = 3 B2 for $b = \frac{1}{2}$ or M1 for substituting <i>their</i> a into a correct equation of first differences

8(f)(i)	$200\left(1 + \frac{r}{100}\right)^2 = 206.46 \text{ oe}$	M1	
	$1 + \frac{2r}{100} + \frac{r^2}{100^2} \text{oe}$	M1	
	$r^2 + 200r - 323 = 0$	A1	Correct solution reached with no errors or omissions seen If 0 scored, SC1 for $200(n)^2 = 206.46$
8(f)(ii)	$\frac{-200 + \sqrt{200^2 - 4(1)(-323)}}{2 \times 1}$	В2	B1 for $\sqrt{200^2 - 4(1)(-323)}$ or $(r + 100)^2$ B1 for $\frac{-200 + \sqrt{q}}{2 \times 1}$ or $r = \sqrt{323 + 100^2} - 100$ OR B2 for $100 \left(\sqrt{\frac{206.46}{200}} - 1 \right)$ or B1 for $\sqrt{\frac{206.46}{200}}$
	1.60 cao final answer	B1	
9(a)(i)	5 9 6 12 S	2	B1 for two correct values Or B1 5 outside and total in $G = 15$ and total in $S = 18$
9(a)(ii)	$\frac{3}{8}$ oe	1	FT $\frac{their\ 12}{32}$
9(a)(iii)	$\frac{2}{5}$ oe	1	FT $\frac{their\ 6}{15}$
9(b)	96	2	M1 for $\frac{36}{64} = \frac{54}{x}$ oe or $36 = \frac{54}{(54+b)} \times 100$ oe If 0 scored SC1 for answer 150

	<u> </u>		
1(a)	9080 cao	3	B2 for 9078 to 9081
			or M1 for 813 × <i>their</i> 11h 10min
1(b)(i)	654 or 653.5	2	M1 for 10260 ÷ 15 h 42 min oe
1(b)(ii)(a)	21.8 or 21.82 to 21.83	1	
1(b)(ii)(b)	4.58 or 4.59 cao	2	M1 for 470 ÷ (10260 ÷ 100) oe or 100 ÷ <i>their</i> (b)(ii)(a)
1(c)	12.97	1	
3(a)(i)	2210 or 2208 or 2208.2, or 2208.16	2	M1 for $2000 \times \left(1 + \frac{2}{100}\right)^5$ oe
3(a)(ii)	10.4 or 10.5 or 10.40 to 10.41	2	M1 for $\frac{their(\mathbf{a})(\mathbf{i}) - 2000}{2000}$ [×100] or $\frac{their(\mathbf{a})(\mathbf{i})}{2000} \times 100$ or $\left(1 + \frac{2}{100}\right)^5 - 1$ or $\left(1 + \frac{2}{100}\right)^5 \times 100$ oe
3(a)(iii)	12	3	B2 for 11.3 or 11.26 to 11.27 OR M2 for $[2000 \times] \left(1 + \frac{2}{100}\right)^{11}$ oe or $[2000 \times] \left(1 + \frac{2}{100}\right)^{12}$ oe seen or M1 for $[2000 \times] \left(1 + \frac{2}{100}\right)^{n}$ oe, $n > 5$ oe or for $2000 \times \left(1 + \frac{2}{100}\right)^{n} = \text{or} > \text{or} \geqslant 2500$ oe
3(b)	490 cao	3	M2 for $p \times \left(1 - \frac{4}{100}\right)^{16} = 255$ oe soi by 490.0 or M1 for $p \times \left(1 - \frac{4}{100}\right)^n = 255$ oe, $n > 1$ oe
11(a)	A: -3 17 – 4 n oe	3	B1 for -3 B2 for $17 - 4n$ oe or B1 for $k - 4n$ oe or $17 - pn$ oe, $p \neq 0$

	B: 124 $n^3 - 1$ oe	3	B	1 for 124 2 for $n^3 - 1$ oe B1 for any cubic
	C: $\frac{11}{128}$ $\frac{n+6}{2^{n+2}}$ oe	4	B3	1 for $\frac{11}{128}$ 3 for $\frac{n+6}{2^{n+2}}$ oe B2 for 2^{n+2} oe seen B1 for 2^k oe or $n+6$ seen
11(b)	$\frac{p+1}{2q}$ oe	2	В	1 for $p+1$ or $2q$ oe
1(a)(i)	$5.101[00] \times 10^8$ final answer		1	
1(a)(ii)	361 150 800 oe		2	FT their (a)(i) M1 for $\frac{70.8}{100} \times 510\ 100\ 000$ or for $\frac{70.8}{100} \times their\ a(i)$
1(b)(i)	6070 oe		1	
1(b)(ii)	32 000 oe		2	B1 for figs 32
1(b)(iii)	6.68 or 6.677		2	M1 for $\frac{6.41 \times 10^5}{9.6[0] \times 10^6}$ [× 100] oe
1(b)(iv)	1250 or 1248 to 1249 oe		2	B1 for figs 125 or figs 1248 to figs 1249
1(c)(i)	25.1 or 25.08		2	M1 for $\frac{7.53 [\times 10^9] - 6.02 [\times 10^9]}{6.02 [\times 10^9]}$ oe or $\frac{7.53 [\times 10^9]}{6.02 [\times 10^9]} \times 100$
1(c)(ii)	1.33 or 1.325		3	M2 for $\sqrt[17]{\frac{7.53[\times 10^9]}{6.02[\times 10^9]}}$ or $\sqrt[17]{1 + \frac{their \ (\mathbf{c})(\mathbf{i})}{100}}$ or M1 for $6.02[\times 10^9] \times p^{17} = 7.53[\times 10^9]$ or $p^{17} = 1 + \frac{their \ (\mathbf{c})(\mathbf{i})}{100}$

11A	24	B1	
	5n-1 oe	B2	B1 for $5n - k$ or $jn - 1$ oe $j \neq 0$
11B	127	B1	
	$n^3 + 2$ oe	B2	B1 for n^3 oe
11C	256	B1	
	$4^{(n-1)}$ oe	B2	B1 for 4^k oe
1(a)	473	2	M1 for 645 ÷ (11 + 4)
1(b)	212.5	2	M1 for 50×4.25
1(c)	31.5 or 31.45 to 31.46	3	M2 for $54 \div 1\frac{43}{60}$ oe or M1 for time =1h 43min or 103 [mins] or $54 \div their$ time
1(d)	875	1	
1(e)	10.4 or 10.38 to 10.39	1	
1(f)(i)	30 [×] 70 and 2100	1	
1(f)(ii)	both numbers rounded up oe	1	
9(a)(i)(a)	€	1	
9(a)(i)(b)	$A \cap B$	1	
9(a)(ii)	B or A'	1	
9(b)		1	
9(c)(i)	3x + 7 = 19 oe	M1	must see 19 and 7
	3x = 19 - 7 or better leading to $x = 4$	A1	with no errors seen
9(c)(ii)	8 18	2	B1 for 2 correct
9(c)(iii)	Ø or { }	1	
9(c)(iv)	15	1	

11(a)(i)	77 243	2	B1 for each
11(a)(ii)(a)	$2n^2 + 5$ oe	2	M1 for a quadratic expression as the answer
			or B1 for common 2nd difference of 4
11(a)(ii)(b)	3^{n-1} oe	2	B1 for 3^k oe where k is a linear function of n
11(b)(i)	21	1	
11(b)(ii)	11	3	B2 for $(4n+45)(n-11)$ seen
			or B1 for $4n^2 + n + 3 = 498$ oe
6(a)		2	B1 for any one correct
	90 30 10		
6(b)	110	1	FT their 110 in Venn diagram
6(c)	$\frac{10}{240}$ oe	1	$\mathbf{FT} \frac{their10}{240}$

6(d)	870 1560 oe	3	M2 for $\frac{their30}{40} \times \frac{their30-1}{39}$ or M1 for $\frac{p}{q} \times \frac{p-1}{q-1}$ $p < q$ or for $\frac{their30}{40}$ soi
8(a)	6 nfww	3	M2 for $\frac{2.65 - 2.50}{2.50}$ [×100] or for $\frac{2.65}{2.50}$ ×100 or M1 for $\frac{2.65}{2.50}$
8(b)	552.5[0]	3	B2 for 52.5[0] or M2 for $500 \times \frac{1.5}{100} \times 7 + 500$ oe or M1 for $500 \times \frac{1.5}{100}$ [× 7] oe
8(c)	37.4 or 37.36	2	M1 for $\left(1 + \frac{1.6}{100}\right)^{20}$ oe soi 1.37
8(d)	4[.00]	3	M2 for $\sqrt[22]{\frac{2607}{6400}}$ or M1 for $6400 \times x^{22} = 2607$ oe or better
11	[Total time =]16 h 6 min or 16.1 h	2	B1 for 22 h 6 min or 22.1h or 966 mins If 0 scored, SC1 for 9 h 41 min
	[Distance to airport in New York =] 16.5	2	M1 for 18 × 55
	[Arc length =] 6200 or 6199 to 6200	3	M2 for $\frac{55.5}{360} \times 2 \times \pi \times 6400$ or M1 for $\frac{55.5}{360}$ or $2 \times \pi \times 2400$
	[Distance Geneva to Chamonix =] 104	2	M1 for 65 × 1.6 or 65 × 96 oe
	392 to 393	2	M1 for $\frac{6316 \text{ to } 6322.4}{their}$ Must be correct value in numerator

1(a)	16.5 or 16.49	3	M2 for $\frac{1.13 - 0.97}{0.97}$ [×100] oe or $\frac{1.13}{0.97}$ ×100 oe or M1 for $\frac{1.13}{0.97}$ oe
1(b)(i)	35	2	M1 for $60 \div (5+7)$
1(b)(ii)	140	1	
1(c)	\$1.26 final answer	3	B2 for 1.259 or 1.26 but not as final answer or M1 for 2.25 ÷ 0.9416
			If 0 scored, SC1 for 1.13 × 0.9416
1(d)	15[.0]	3	M2 for $\sqrt[21]{\frac{58000}{1763000}}$ oe
			or M1 for $58000 = 1763000 (k)^{21}$
1(e)	1239.75	2	B1 for 43 + 0.5 or 28 + 0.5 oe seen
11(a)	40 54	4	B1 for each
	26 34		
11(b)	$n^2 + 3n$ or $n(n+3)$ oe	2	B1 for a quadratic expression or for 2nd common difference 2 (at least 2 shown) or for 2 correct equations seen or for subtracting n^2
11(c)	100	2	M1 for <i>their</i> (b) = 10300 seen
11(d)	$[a =] \frac{1}{2} \text{ oe}$ and $[b =] \frac{5}{2} \text{ oe}$	2	B1 for each or M1 for one correct equation or for 2nd difference = 1 soi (at least 2 shown)

1(a)(i)	6h 27 mins	2	B1 for answerh 27 mins
1(a)(ii)	150 km/h	3	M2 for $\frac{90}{36} \times 60$ or M1 for $\frac{90}{their}$ time
			or B1 for 36 [mins] seen
1(a)(iii)	780	4	M3 for $\left(90 \times \frac{35}{3600}\right) \times 1000 - 95$ oe
			M2 for $\left(90 \times \frac{35}{3600}\right) \times 1000$ oe or B1 for figs 875
			or M1 for $90 \times \frac{35}{3600}$ seen
			or for $90 \times \frac{1000}{3600}$ oe If 0 scored, SC1 for their distance (> 95) – 95
1(b)(i)	7:5	1	is a sected, seef for men distance (* 35) 35
1(b)(ii)	66.7 or 66.66 to 66.67	3	M2 for $\frac{140-84}{84}$ [× 100] oe or for $\frac{140}{84}$ × 100 oe
			or M1 for $\frac{140}{84}$ oe
1(b)(iii)	24 576	5	M4 for complete method, 40 × 60 + 0.7 × 220 × 84 + 0.3 × 220 × 140 oe OR B1 for 40 [children] M1 for 0.7 × 220 × 84 oe M1 for 0.3 × 220 × 140 oe B1 for 2400 or 12936 or 9240 nfww
1(c)	3.5×10^5 nfww	3	M2 for $3.08 \times 10^5 \div \left(\frac{100-12}{100}\right)$ oe or M1 for 3.08×10^5] associated with (100-12)%
10(a)(i)	3, –1	2	B1 for each
10(a)(ii)	23 - 4n oe final answer	2	M1 for $k - 4n$ or $23 - jn$ $(j \neq 0)$
10(a)(iii)	22	2	M1 for their (a)(ii) = -65
10(b)	23	2	B1 for 37 or 60

L	1		
2(a)	[Ali] 2700 [Mo] 2100	3	B2 for one correct or for correct values reversed or M1 for $600 \div (9-7)$ or for any equation that would lead to an answer of 300, 2700 or 2100, or 4800 (for the total)
2(b)	11	3	M2 for $\frac{220-195.8}{220} [\times 100]$ or for $[100-]\frac{195.8}{220} \times 100$ or M1 for $220-195.8$ or for $\frac{195.8}{220}$ or a correct implicit equation for percentage reduction or for $\frac{195.8-220}{220}$
2(c)	84	3	M2 for $\frac{63}{1-\frac{25}{100}}$ oe or M1 for associating 63 with $(100-25)\%$ or a correct implicit equation for the original price.
3(a)	662.45	2	M1 for $600 \times \left(1 + \frac{2}{100}\right)^5$ oe
3(b)(i)	800	2	M1 for $x \left(1 + \frac{5}{100} \right)^2 = 882$ oe or SC1 for answer 82
3(b)(ii)	5 nfww	2	M1 for trial with $882 \times \left(1 + \frac{5}{100}\right)^n$ with $n > 1$

10(a)	-7 13 - 4 <i>n</i> oe	11	B1 B2 or B1 for $13 - kn$ ($k \ne 0$) or for $k - 4n$
	$(n+1)^2$ oe		B1 B2 or B1 for any quadratic
	125 n³ oe		B1 B1
	$ \begin{array}{c} 128 \\ 2^{n+2} \end{array} $ oe		$\begin{array}{c} \mathbf{B1} \\ \mathbf{B2} \\ \text{or } \mathbf{B1} \text{ for } 2^k \text{ oe} \end{array}$
10(b)	,, 6, 10, 16 , 3, 4, 7, 2,, 1, 0,	3	B1 for each correct row
10(c)(i)	$\frac{q}{p+q}$	1	
10(c)(ii)	$\frac{18}{29}$	1	

1(a)(i)	5:6	1	
1(a)(ii)	$2.0736[0] \times 10^5$ final answer	3	B2 for 207360 oe or M1 for 16 × 18 × 720
1(b)(i)	26780	2	M1 for 18540 ÷ 9 soi
1(b)(ii)	1.36	2	M1 for 0.85 × 1.6 oe or B1 for 0.51 or 51
1(c)	66.7 or 66.66 to 66.67	5	M4 for $\frac{(2.3-1.5\times0.92)}{1.5\times0.92}$ [×100] oe or $\frac{2.3\times100}{1.5\times0.92}$ oe OR Working in euros B2 for [\in]1.38 or M1 for $\frac{2.3-their}{1.38}$ [×100] oe $\frac{2.3-their}{1.38}$ [×100] oe or $\frac{2.3-their}{1.38}$ ×100 oe or $\frac{2.3-their}{1.38}$ ×100 oe or M1 for $\frac{2.3-their}{1.38}$ ×100 oe or $\frac{2.3-their}{1.38}$ or M1 for $\frac{2.3-their}{1.38}$ or M1 for $\frac{2.3-their}{1.38}$ or M1 for $\frac{2.3-their}{1.38}$ or $\frac{2.3-their}{1.38}$ or M1 for $\frac{2.3-their}{1.38}$ or M1 for $\frac{2.3-their}{1.5}$ [×100] oe or $\frac{2.3-their}{1.5}$ ×100 or M1 for $\frac{2.3-their}{1.5}$ 1.5 or $\frac{2.3-their}{1.5}$ ×100 or M1 for $\frac{2.3-their}{1.5}$ 1.5 or $\frac{2.3-their}{1.5}$ ×100 or M1 for $\frac{2.3-their}{1.5}$

9(a)	171 or 171.0	3	M2 for $\frac{7.6}{160} \times 60 \times 60$ oe or M1 for $\frac{7.6}{160}$ or $\frac{7.6}{2\frac{2}{3}}$ or $\frac{7.6}{2 \min 40 \text{sec}}$ If 0 scored, SC1 for answer 189 or 188.6 to 188.7
9(b)(i)	77 [min] 20 [s]	4	m3 for $\frac{32}{12} \times 29$ oe or B2 for 4640 or 1.29 or 1.288 to 1.289, $\frac{58}{45}$ oe or 32 laps or 29 laps or M2 for $2^5 \times 5 \times 29$ oe or M1 for $2 \text{ m } 40 \sec \div (2 \text{ m } 40 \sec - 2 \text{ m } 25 \sec)$ soi for $2 \text{ m } 25 \sec \div (2 \text{ m } 40 \sec - 2 \text{ m } 25 \sec)$ soi or for an attempt to find LCM or 23 200 seen or correctly find prime factors of 145 or 160 or for $\frac{7.6}{145}$ or $\frac{7.6}{2\frac{5}{12}}$ or $\frac{7.6}{2 \min 25 \sec}$ oe, provided SC1 not earned in part (a)
9(b)(ii)	220.4	2	M1 for their (b)(i) \div 2min 40 sec [× 7.6] oe or their (a) × their (b)(i) \div 60 oe

1(a)(i)	1254	2 M1 for 342 ÷ 3	
1(a)(ii)	27.3 or 27.27	1	
1(b)	867	2 M1 for $1020 \times \frac{15}{100}$ oe or $1020 \times \left(1 - \frac{15}{100}\right)$ oe	
1(c)	4.5[0]	3 M2 for $\frac{79.5[0]}{100+6}[\times 6]$ oe or $\frac{79.5[0]}{100+6} \times 100$ oe or M1 for 79.5[0] associated with	h 106[%]
1(d)	22.6 or 22.58 nfww	M1 for $\frac{45}{20}$ or better and M2 for $\frac{60+45}{their 2h 24 min + their \frac{45}{20}}$ or M1 for their $\frac{45}{20}$ + their 2h 2	
1(e)	91.6[0] to 91.61	3 M2 for $480 \times \left(1 + \frac{2.1}{100}\right)^4 - 430$ o OR M1 for $480 \times \left(1 + \frac{2.1}{100}\right)^4$ oe A1 for 522, 521.6[0] to 521.61	e
1(f)	112.8125	2 B1 for 2.5 or 9.5 seen	

1(a)(i)	23.27 final answer	2	M1 for 9 × 2.97 soi
1(a)(ii)	2.75 final answer	3	M2 for $2.97 \div \frac{108}{100}$ oe or M1 for $108[\%]$ associated with 2.97 oe
1(b)	12.4[0] or 12.41 to 12.42	2	M1 for 35 ÷ 0.0153 oe If 0 scored, SC1 for answer 0.19
1(c)	70 nfww	3	M2 for $(600 + 2.5) \div (9 - 0.5)$ or B1 for one of $600 + 2.5$ or $9 - 0.5$ seen

11(a)	25 9 16	3	B1 for e	each
11(b)(i)	$(n-1)^2$ oe	2	B1 for a	any quadratic of form $[1]n^2[+bn+c]$
11(b)(ii)	n+3 oe	1		
11(c)	25	2	M1 for	their $(n-1)^2 = 576$
11(d)(i)	$n^2 - 3n - 2$ final answer	3	or 2nd or B1 for express	their $(n-1)^2$ – their $(n+3)$ oe diff = 2 soi $n^2 - n - n + 1$ or better or $-n - 3$ or for ion of form $n^2 - 2n - n + k$ or correct ion not in simplest form
11(d)(ii)	808 cao	2	M1 for	substituting 30 in their (d)(i)
1(a)	$\frac{9}{9+7+4} \times 680$		1	
1(b)	238 136		3	B2 for 238 or 136 or M1 for $\frac{7}{9+7+4} \times 680$ oe or $\frac{4}{9+7+4} \times 680$ oe seen
1(c)	272		2	M1 for 306 ÷ 1.125
1(d)	1.37		3	M2 for $(17.56-5\times2.69) \div 3$ or M1 for $17.56-5\times2.69$ or B1 for 13.45 [cost of apples]
1(e)	40.8[0]		3	3FT for $0.3 \times their$ 136 from part (b) or M2 for their $136(\frac{1}{2} + \frac{1}{5})$ or better or M1 for their $136 \times \frac{1}{2}$ or their $136 \times \frac{1}{5}$ or B1 for 68 or 27.2 or $\frac{3}{10}$ or 0.3 seen
3(a)	6.06 or 6.060 to 6.061		3	M2 for $\frac{82500 - 77500}{82500} [\times 100]$ oe or M1 for $\frac{77500}{82500} [\times 100]$ soi
3(b)	13 674 cao		3	M1 for $12000 \left(1 + \frac{2.2}{100}\right)^6$ A1 for 13673.7

10(a)	75	3	M2 for 79.5 ÷ 1.06 oe or M1 for 79.5 associated with 106 [%]
10(b)	962.5 cao	2	B1 for 35 or 27.5 seen
10(c)(i)	16	1	
10(c)(ii)	50	1	
10(c)(iii)	$\frac{4}{50}$ oe	2	FT their (c)(ii) for 1 or 2 marks B1 for $\frac{4}{k}$, $k > 4$ or $\frac{k}{their 50}$, $k < 50$
10(c)(iv)	19	1	
12(a)	18 28	2	B1 for each
12(b)	3n+3 oe	2	B1 for $3n + k$ oe or $cn + 3$ oe $c \neq 0$
12(c)	45	2	M1 for identifying 7th pattern or M1 for their $(3n+3)=24$
12(d)	$[a=]\frac{3}{2}$ oe $[b=]\frac{13}{3}$ oe	6	M1 for any correct substitution e.g. $\frac{1}{6}(2)^3 + 2^2a + 2b$ A1 for one of e.g. $\frac{1}{6} + a + b = 6$ oe
			$\frac{8}{6} + 4a + 2b = 16 \text{ oe}$ $\frac{27}{6} + 9a + 3b = 31 \text{ oe}$ $\frac{64}{6} + 16a + 4b = 52 \text{ oe}$ A1 for another of the above M1 for correctly eliminating one variable from <i>their</i> equations A1 for $a = \frac{3}{2}$ A1 for $b = \frac{13}{3}$ oe

1(a)(i)	85	1	
1(a)(ii)	455	2	M1 for $260 \div 20 \times 35$ oe
1(a)(iii)	61	3	B2 for 61.5 seen or M1 for 2000 ÷ 650 soi or for $\frac{x}{2000} = \frac{20}{650}$ oe or other attempt at scaling up with 650 or for 650 ÷ 20 oe
1(b)(i)	40	3	M2 for $\frac{1.89 - 1.35}{1.35}$ [× 100] oe or $\frac{1.89}{1.35} \times 100$ oe or M1 for oe $\frac{1.89}{1.35}$ [×100] soi
1(b)(ii)	1.75 nfww	3	M2 for $1.89 \div \left(\frac{100 + 8}{100}\right)$ or better or M1 for 1.89 associated with 108 [%]
1(c)	10.1 or 10.06	3	M2 for $\sqrt[3]{\frac{20.8}{15.6}}$ oe or M1 for $15.6 \times k^3 = 20.8$ oe
1(d)(i)	14:15	3	B2 for correct unsimplified 3 term ratio A: B: C or correct unsimplified two term ratio A: C or M1 for attempt to find common multiple of 4 and 10 or other common value for B or for $7 \times \frac{4}{10}$ oe or $3 \times \frac{10}{4}$ oe
1(d)(ii)	147	3	M2 for $\frac{45}{15}$ (14 + 20 [+15]) oe or 45 ÷ 3 × 4 + (45 ÷ 3 × 4) ÷ 10 × 7 [+ 45] or M1 for 45 ÷ 3 oe or 45 ÷ <i>their</i> (d)(i) value for C shown

1(a)(i)	13.5	3		2 for $\frac{45.4[0]-40}{40}$ [× 100] or $\frac{45.4[0]}{40}$ × 100 M1 for $\frac{45.4[0]}{40}$ [× 100]
1(a)(ii)	35.5[0]	3	l	2 for $42.6[0] \div \left(1 + \frac{20}{100}\right)$ or better M1 for recognising $42.6[0]$ as $120[\%]$
1(b)	150 cao	2	M 1	1 for $\frac{500 \times 2 \times 15}{100}$ oe
1(c)(i)	7800 cao	3	or l	for 7790 or 7785 to 7786 M1 for $21000 \times \left(1 - \frac{18}{100}\right)^5$ oe isw O or 1 scored, SC1 for their 7785 seen and unded correctly to nearest 100
1(c)(ii)	9[.00]	3		2 for $\sqrt[12]{\frac{42190}{15000}}$ or better M1 for $15000 \left(1 + \frac{x}{100}\right)^{12} = [42190]$
1(a)(i)	2.25 final answer		2	M1 for $\frac{3}{5+3}$ or $\frac{6}{5+3}$ oe
1(a)(ii)	37.5		1	FT their $\frac{(\mathbf{a})(\mathbf{i})}{6} \times 100$
1(a)(iii)	5.5[0] or 5.499 to 5.500		2	M1 for 6 ÷ 1.091
1(b)	21		3	M2 for $15 \times \sqrt{\frac{352.8}{15 \times 12}}$ oe or SC2 for answer 16.8 or M1 for $\sqrt{\frac{352.8}{15 \times 12}}$ or $\sqrt{\frac{15 \times 12}{352.8}}$ seen or M1 for a correct implicit statement for the length
1(c)	525		3	M2 for $\frac{483}{100-8}$ [×100] oe or M1 for 483 associated with 92 [%]

6(0)(iv)	Comport shading		1	1
6(a)(iv)	Correct shading		1	
6(b)(i)	Fully correct Venn diagram		4	4 B1 for each correct region
	$ \begin{array}{ c c c c c } \hline A & & & & & & B \\ \hline 2 & & & & & 3 & & 1 \\ 6 & & & & & 4 & & 5 & & 1 \\ 10 & & & & & 5 & & & 9 \end{array} $			
6(b)(ii)	3 4 5		1	1 FT their (b)(i)
1(a)(i)	1200		2	M1 for 1962 ÷ 1.635
1(a)(ii)	1667.7[0] final answer		2	M1 for $1962 \times (1 - \frac{15}{100})$ oe
				or B1 for 294.3[0] If 0 scored, SC1 for answer 1020
1(a)(iii)	275		2	M1 for 220 ÷ <i>their</i> $(5-1)$ soi
1b(i)	165		3	M2 for $\frac{9752 - 3680}{3680} [\times 100]$ oe or $\frac{9752}{3680} \times 100$ oe
				or M1 for $\frac{9752}{3680}$ or $9752 - 3680$
1b(ii)	51200		3	M2 for $\frac{74240}{100+45} [\times 100]$ oe
				or M1 for 74 240 associated with 145[%] oe
2(a)(i)	$\frac{240}{(23+25)} \times 23$	M1		
2(a)(ii)	11:10	2	or	1 for 110:100 or better C1 for 10:11, following boys 100, girls 110
<u> </u>				

2(a)(iii)	276	2	M1 for 24	$40 \times \left(1 + \frac{15}{100}\right) \text{ oe}$
			or B1 for	36 seen
2(a)(iv)	150	3	_	$\frac{240}{00+60}$ [× 100] oe revidence of 160[%] associated 240
2(b)	464 000	3	A1 for 46 B1 for <i>the</i>	$56000 \times \left(1 + \frac{2}{100}\right)^{30}$ oe 63700 to $463710eir more accurate answer seen ando nearest 1000$
2(c)	4.5[0]	3	or M1 for If 0 score 3.588	$x = \int_{0.07}^{32} \sqrt[3]{4.09}$ oe or $(x)^{32} = 4.09$ oe d, SC2 for answer 3.6 or 3.59 or or $\sqrt[32]{3.09}$ or 1.0358 to 1.036 seen
10(a)	8 15	B1		
	$\frac{n+2}{2n+3}$ oe	B2	B1 for <i>n</i> denomina	+ 2 as numerator or $2n + 3$ as attor
10(b)(i)	1-2n oe	2	B1 for - 2	$2n + k$ oe or $pn + 1$ $(p \neq 0)$ oe
10(b)(ii)	$n^3 + 1$ oe	2	M1 for cu	abic expression
1 (a)	22.9 or 22.85 to 22.86		2	M1 for $\frac{8}{10+17+8}$ [× 100] oe
(b)	$5635 \times \frac{17}{10 + 17 + 8}$ or better [= 273]	37]	2	M1 for $\frac{5635}{(10+17+8)}$
(c)	5000		3	M2 for $5635 = k \left(1 + \frac{2.42}{100} \right)^5$ oe
				or B1 for $\left(1 + \frac{2.42}{100}\right)$
(d)	9950		2	M1 for 2 × 2500 or 3 × 1650
(e)	1.98 final answer		2	B1 for 1.976 or 1.98 not final answer or M1 for 130 × 0.0152

	1	1	
1(a)(i)	275.31	2	M1 for $90 \times 23.15 + 1885 \times 13.5$ oe
1(a)(ii)	3202	3	M2 for $\frac{198.16 - 90 \times 0.245}{0.055}$ oe
			M1 for 90×0.245 or 90×24.5 oe
1(b)	17.[0] or 17.00 to 17.01	2	M1 for $13.5 \times \left(1 + \frac{8}{100}\right)^3$
1(c)(i)	40	3	M2 for $\frac{7.7-5.5}{5.5}$ [×100] oe or $\frac{7.7}{5.5}$ ×100 or M1 for $\frac{7.7}{5.5}$ oe
1(c)(ii)	11.9 or 11.86 to 11.87	3	M2 for $\sqrt[3]{\frac{7.7}{5.5}}$ oe or M1 for $5.5 \times x^3 = 7.7$ oe
1(d)	150 [million] oe	2	M1 for 390 [million] ÷ (5+2+6)
1(e)	250 nfww	3	M2 for 258.25 ÷ ((100 + 3.3) ÷ 100) or M1 for 258.25 associated with 103.3[%]
9(a)(i)	5 and 13	1	
9(a)(ii)	8n - 3 = 203	M1	Evaluation of 25th or 26th term with supporting evidence or explanation
	25.75 or $25\frac{3}{4}$	A1	Second evaluation of 25th or 26th terms with supporting evidence or explanation
			If zero scored, SC1 for 25.75 or 197 and 205 with partial evidence or explanation
9(b)(i)	6n + 7 oe final answer	2	B1 for $6n + c$ or $kn + 7$ $k \neq 0$
9(b)(ii)	$n^2 + n + 2$ oe final answer	2	B1 for a quadratic expression or second difference = 2
9(c)	[y =] 10	2	M1 for $5(20 - y) = 50$
	[First term =] 14	2	M1 for $5(x - their y) = 20$ or for $20 \div 5 + their y$

1(a)(i)	600 ÷ (11+ 9) × 11 [=330] with no errors seen	M1	Could be in so	eparate steps		
1(a)(ii)	270	1				
1(b)(i)	372 cao nfww	3	B2 for answer 371.7			
			or M1 for 330	$0 \times \left(1 + \frac{1.5}{100}\right)^8$ oe not spoiled		
			After zero sco	ored, SC1 for answer 42 or 41.7		
1(b)(ii)	12.6 or 12.7 or 12.63 to 12.73	2		$\frac{(\mathbf{b})(\mathbf{i}) - 330}{330}$ or $\frac{their(\mathbf{b})(\mathbf{i})}{330} \times 100$ soi by 112.7		
			or 113 After zero sco	ored, SC1 for answer 12%		
1(c)(i)	$\frac{99}{280}$ cao final answer	1				
1(c)(ii)	27.5[0]	3	M2 for 24.75	$\div \frac{100-10}{100}$ oe		
				100 ognising 24.75 as 90[%] oe		
1(d)(i)	32 cao	2	M1 for $\left(1 - \frac{20}{100}\right) \left(1 - \frac{15}{100}\right) [x]$ oe			
			or for 0.15 × 0	0.8 [x] oe		
1(d)(ii)	13 cao	2	M1 for $\left(1 - \frac{20}{100}\right) \left(1 - \frac{15}{100}\right) \times x = 40.84 - 32$ oe seen			
			or for their (d	$(1)(i) + \left(1 - \left(\frac{their\ (d)(i)}{100}\right)\right)x = 40.84 \text{ oe}$		
1(a)(i)	9550		1			
1(a)(ii)	23 158 750		2FT	FT their (a)(i) × 2425 correctly evaluated M1 for their lower bound × 2425		
1(a)(iii)	23 160 000		1FT	FT their (a)(ii) rounded to 4 sf		
1(a)(iv)	2.316×10^7			FT their (a)(iii) or their (a)(ii) rounded to 3sf or more and in standard form		
1(b)	520 nfww		3	M2 for $546 \times \frac{100}{(100+5)}$ oe		
				or M1 for 105[%] associated with 546 oe		
1(c)	3380 or 3376 to 3377		2	M1 for $3000 \times \left(1 + \frac{3}{100}\right)^4$ oe		
	+					

10(a)	27 30 21 24 22 25 C	4	All 8 regions correct M3 for 6 or 7 regions correct M2 for 4 or 5 regions correct M1 for 3 regions correct
10(b)(i)	∉	1	
10(b)(ii)	Ø	1	
10(c)	21, 23, 24, 29	2FT	Correct or FT SC1 for 1 omission or 4 correct and 1 extra
10(d)(i)	5	1FT	Correct or FT if less than 10
10(d)(ii)	9	1FT	Correct or FT if less than 10
10(e)	□ or □	1	
11	$64 \qquad (n+3)^2$ oe final answer	1, 2	M1 for a quadratic expression seen or second differences 2
	3n+2 oe final answer	1, 2	B1 for $3n + k$ (any k) or $kn + 2$ ($k \ne 0$)
	47 $(n+3)^2 - (3n+2)$ oe isw	1, 2FT	FT their difference expressions $A - B$ M1 for expression $an^2 + bn + c$ seen or second differences 2
	$\frac{7}{6}$ $\frac{n+2}{n+1}$ oe final answer	1, 2	B1 for $\frac{n+k+1}{n+k}$ seen

1(a)	2915	2	M1 for 10 494 ÷ (13 + 5) oe
1(b)	1056	2	M1 for $384 \div (10 - 6)$ oe
1(c)(i)	52.2 or 52.17	2	M1 for 20 ÷ 23 or 20 × 60 or 23 ÷ 60 isw If zero scored, SC1 for answer 52.6 (from use of 0.38)
1(c)(ii)	63[.0] or 63.03 to 63.05	5	M4 for $\frac{their 52.1732}{32} \times 100$ oe or M3 for $\frac{their 52.1732}{32}$ oe or $\frac{their 52.17}{32} \times 100$ oe OR B2 for $\frac{5}{8}$ [hours] oe or 37.5 [minutes] or M1 for $20 \div 32$ or better and M2 for $\frac{their 37.5-23}{23} \times 100$ oe or M1 for $\frac{their 37.5-23}{23}$ or $\frac{their 37.5}{23} \times 100$
1(d)	0.06 final answer nfww	3	M1 for 11.99 ÷ 0.9276 or 12.99 × 0.9276 A1 for 12.93 or 12.925 to 12.926
1(e)	9750	3	M2 for $7605 \div \left(1 - \frac{22}{100}\right)$ oe or M1 for $(100 - 22)[\%]$ correctly associated with 7605 seen
6(a)	18 22 $4n + 2$ oe 17 26 $n^2 + 1$ oe	6	B2 for 18, 22, 17, 26 or B1 for two or three correct values AND B2 for $4n + 2$ oe or B1 for $4n + k$ oe or $pn + 2$ ($p \ne 0$) AND B2 for $n^2 + 1$ oe or B1 for $n^2 + k$ oe
6(b)	242	1	FT their $4n + 2$ provided a linear expression
6(c)	15	1	
6(d)	3	2	M1 for $2 \times 1^2 + 2 \times 1 + q = 7$ oe

1(a)(i)	4:5	1	
1(a)(ii)	4:5	1	
1(a)(iii)	3:4	2	B1 for 12 : 16 or answer 4 : 3
1(b)(i)	26.8 or 26.79	3	M2 for $\frac{15600 - 11420}{15600} [\times 100]$ or $\frac{11420}{15600} \times 100$ or M1 for $\frac{11420}{15600}$
1(b)(ii)	16 000 nfww	3	M2 for $15600 \times \frac{100}{100 - 2.5}$ oe or M1 for 15600 associated with 97.5[%] seen
1(c)	1.6 or $\frac{8}{5}$	2	M1 for $\frac{200 \times x \times 15}{100} = 48$ oe or M1 for figs 16
1(d)	2.5 or $\frac{5}{2}$ cao nfww	3	B2 for 2.49[9] or 102.4[99] or 1.024[99] or 2.50 or 102.5 or 1.025 or $\sqrt[10]{\frac{256}{200}}$ oe or M1 for $256 = 200(x)^{10}$ seen

3(a)(i)	1890	2	M1 for 126 ÷ 4 [× 60] oe If zero scored, SC1 for answer 31.5
3(a)(ii)	103.95	4	M3 for $0.5 \times \left(\frac{44}{60} + \frac{55}{60}\right) \times 126$ oe or SC3 for figs 10395 or figs 104 or M2 for two correct area methods or for a full method without minutes to hours conversion or M1 for one correct area with or without minutes to hours conversion
3(b)(i)	126 × 1000 ÷ (60 × 60)	1	
3(b)(ii)	46.3 or 46.28 to 46.29	3	M2 for (1400 + 220) ÷ 35 oe or M1 for distance ÷ speed or 1400 + 220
3(c)	180 nfww	4	B3 for final answer 3 OR M3 for $\frac{217.5}{72.5} \times 60$ oe or M2 for $217.5 \div 72.5$ oe or $\frac{210 \text{ to } 220}{72.5} \times 60$ or $\frac{217.5}{72 \text{ to } 74} \times 60$ or M1 for 217.5 or 72.5 seen or $\frac{215}{73} \times 60$
10(a)(i)	$2^2 \times 3^2 \times 5$ oe	2	M1 for 3 correct prime factors in a tree or table seen before the first error or for 2, 3, 5 identified
10(a)(ii)	540	2	M1 for $2^2 \times 3^3 \times 5$ or 2×3^3 shown or answer $540k$
10(b)	X = 8575 Y = 6125	4	B3 for $X = 8575$ or $Y = 6125$ or B2 for $a = 5$ or $b = 1$ soi or B1 for $1225 = 5^2 \times 7^2$ or $42875 = 5^3 \times 7^3$ or M1 for $a^2 \times 7^2$ [= 1225] or $a^3 \times 7^{b+2}$ [= 42875]

1	(a)	$\frac{8}{8+15+9} \times 640$ oe	1	With no errors seen
	(b)	300 and		
		180	2	B1 for each or SC1 for answers reversed
	(c)	10 nfww	2	M1 for 160 ÷ 15.25 implied by 10.5 or 10.49 nfww
	(d)	$\frac{7}{24}$	3	M1 for $\frac{3}{8} + \frac{1}{3}$ oe
		24		M1dep on previous M1 for $1 - their(\frac{3}{8} + \frac{1}{3})$ oe
	() ()			
3	(a) (i)		3	B1 for each
		$\begin{array}{ c c }\hline M & & & \\\hline & & \\\hline & & & \\\hline & & \\\hline & & & \\\hline & & $		
	(ii)	46	1FT	FT 29 + their 3 values from (a)
	(iii)	11	1	.,
	(iv)	$\frac{7}{19}$ oe	2	M1 for $\frac{n}{16 + their3}$ $(0 < n < (16 + their 3))$
				or $\frac{4 + their 3}{k} (k > (4 + their 3))$
	(b) (i)	$\frac{9}{200}$ or 0.045	1	
	(ii)	10800	3	M2 for $\frac{1}{2}$ (900 + 1500) × 9 oe
				or M1 for method of finding a relevant area
	(iii)	7.2	1FT	FT (their 10800) ÷ 1500
5	(a)	6250	3	M2 for $\frac{6000}{100-4} \times 100$ oe
				or M1 for 6000 associated with 96 [%]
	(b)	4441	3	B2 for 4441.1 to 4441.2 or 4440
				or M1 for $\frac{6000}{1.351}$
				1.351
	(c)	1.58 or 1.581	5	M1 for $6000 \times \left(1 + \frac{1.5}{100}\right)^8$ oe
				A1 for 6758.95 or 6758.96 to 3 sf or better or 758.95 or 758.96 rounded or truncated to 3 sf
				and M2 for
				$\{their(6000\times1.015^8)-6000\}\times\frac{100}{6000\times8}$ oe
				or M1 for $\frac{6000 \times r \times 8}{100}$ oe
⊢—		!		+

1 (a) (i)	48	2	M1 for $\frac{72}{3}$	
(ii)	32.4[0]	1		
(iii)	$\frac{13}{30}$	2	M1 for $\frac{72 - their(ii) - 8.4}{72}$ oe	
(iv)	24	3	M2 for $\frac{19.2}{0.8}$ oe or M1 for recognising 19.2 is 80%	
(b)	3		M2 for $\frac{550 \times 2 \times 10}{100} + 550$ oe or M1 for $\frac{550 \times 2 \times 10}{100}$ oe	
(c)	663.9[0]	2	M1 for 550×1.019^{10} oe	
(d)	1.5[0]	3	M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe	
			or M1 for $550 \times m^{10} = 638.3[0]$	
1 (a) (i)	1245 [pm]	2	B1 for 2045 seen or 845 pm seen or [0]135 seen	
(ii)	788 or 787.8 to 788.1	2	M1 for 8800 ÷ 11h 10 mins oe	
(b) (i)	4230[.00]	2	M1 for 2350 ÷ 5 oe	
(ii)	22.2 or 22.2	1		
(c) (i)	3808 final answer	2	M1 for $2240 \times \frac{100 + 70}{100}$ oe	
(ii)	800	3	M2 for $2240 \div \frac{100 + 180}{100}$ oe	
(d) (i)	1130	4	or M1 for 2240 associated with 280% M3 for (826.5[0] – 12 × (28 + 6.5[0])) ÷ 1.25 seen or M2 for 826.5[0] – 12 × (28 + 6.5[0]) seen or M1 for 12 × (28 + 6.5[0]) seen	
(ii)	\$146.9[0] final answer	2FT	FT their(d)(i) \times 0.13 correctly evaluated If answer not exact to at least 3 sf or better M1 for their (d)(i) \div 10 \times 1.3	

1	(a) (i)	36 600	3	M2 for $6100 \div 2 \times (2 + 7 + 3)$ oe or M1 for $6100 \div 2$ soi
				01 1411 101 0100 - 2 801
	(ii)	$16\frac{2}{3}$ or 16.7 [16.66 to 16.67]	1	
	(b)	1 231 708 final answer nfww	5	M4 for 5964 × 15 + 28400 × 35 + 8236 × 18 or M3 for 5964 × 15 and 28400 × 35
				or for $5964 \times 15 + 42600 \times their$ decimal $\frac{2}{3}$
				× 35 + (42 600 – 5964 – 42 600 × their
				$\operatorname{decimal} \frac{2}{3}) \times 18$
				or M2 for 5964 × 15 or 28400 × 35
				or for $42600 \times their$ decimal $\frac{2}{3} \times 35$
				or M1 for 0.14×42600 or $42600 \div 3 \times 2$
	(c)	27.2[0] nfww	5	M2 for 23.80 ÷ 0.7 oe or M1 for 23.80 associated with 70% oe
				and M2 for their $(23.80 \div 0.7) \times 0.8$ or M1 for their $(23.80 \div 0.7) \times 0.2$
10	(a)	10 15		
	. ,	15 21		
		35 48	6	B1 for each correct entry
	(L) (D)			
	(b) (i)	3	2	M1 for any correct substitution in $n^2 + 4n + p$ = number of tiles eg $2^2 + 4(2) + p = 15$
	(ii)	143	1FT	FT 140 + <i>their</i> (b)(i)
	(c)	$a = \frac{1}{2}$ oe $b = \frac{3}{2}$ oe nfww	5	B1 for a correct simplified equation e.g. $a + b + 1 = 3$, $4a + 2b + 1 = 6$, 9a + 3b + 1 = 10 etc B1 for a 2 nd correct simplified equation M1 for correctly eliminating one variable for their equations in a and b A1 for $a = \frac{1}{2}$ nfww A1 for $b = \frac{3}{2}$ nfww
(d)	(i)	171	2FT	
	``			FT their $a \times 17^2$ + their $b \times 17 + 1$ M1 for their $a \times 17^2$ + their $b \times 17 + 1$
	(ii)	673	1FT	FT their (d)(i) × 4 – 11

1 (a) (i)	60 and 45	2	M1 for $105 \div (4+3)$
(ii)	117.6[0] final answer	2	M1 for 105 × 1.12 oe
(iii)	125	3	M2 for $105 \div (1 - \frac{16}{100})$ oe or M1 for 105 seen associated with 84%
(b)	30.68 final answer	6	B5 for 30.7[0] or 30.68 or B4 for 905 to 906 and 875 or 405 to 406 and 375 OR M1 for $500 \times \left(1 + \frac{2}{100}\right)^{30} [-500]$ oe
			M1 for $[500 +]$ $\frac{500 \times 2.5 \times 30}{100}$ B1 for 905 to 906 or 875 or 405 to 406 or 375
(c)	480 or 479.8 to 479.9	3	M2 for $1469 \div \left(1 + \frac{3.8}{100}\right)^{30}$ oe
			or M1 for $P \times \left(1 + \frac{3.8}{100}\right)^{30} = 1469$ oe
(d)	6.5[0] or 6.500	3	M2 for $\sqrt[14]{\frac{120150}{60100}} [\times 100 - 100]$ oe
			or M1 for $60100 \times ()^n = 120150$ oe where $n = 5$ or 11 or 55

1 (a) (i)	11 054.25 final answer	2	M1 for $18000 \times \left(1 - \frac{15}{100}\right)^3$ oe
(ii)	16 500	3	M2 for $14025 \div \left(1 - \frac{15}{100}\right)$ oe or M1 for recognition of 14025 as 85% soi
(b)	260 final answer	2	M1 for $P\left(1 + \frac{5}{100}\right)^2 = 286.65$ oe
(c) (i)	6.18	3	M2 for $\frac{224.72 - 200}{200 \times 2} \times 100$ oe
			or $\frac{1}{2} \left(\frac{224.72}{200} \times 100 - 100 \right)$
			or M1 for $\frac{200 \times r \times 2}{100}$ oe or $\frac{224.72 - 200}{200 \times 2}$ or $\frac{224.72}{200 \times 2}$
			$\frac{224.72}{200} \times 100 - 100$ soi by 12.36
			If zero scored, SC1 for 56.18 or 56.2 as final answer
(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or 10.6
			or M1 for $200\left(1 + \frac{r}{100}\right)^2 = 224.72$ oe

		i	
1 (a) (i)	1050	2	M1 for 924 ÷ 22 oe or 924 ÷ 0.88 oe If zero scored, SC1 for 126 seen
(ii)	12	1	
(iii)	5 1/4 hrs or 5.25 hrs	2	M1 for 9 ÷ (7 + 5) or 540 ÷ (7 + 5) If zero scored, SC1 for answer 3.75h or 3h 45 mins
(b)	24.6[0]	3	M2 for $15.99 \div \left(1 - \frac{35}{100}\right)$ oe or M1 for 65% associated with 15.99
(c)	63	3	M2 for $35 \times \sqrt{\frac{2835}{875}}$ oe
			or M1 for $\sqrt{\frac{2835}{875}}$ or $\sqrt{\frac{875}{2835}}$ or better or
			$\frac{\sqrt{2835}}{?} = \frac{\sqrt{875}}{35} \text{ oe}$ OR
			M2 for $\sqrt{2835 \times \frac{35}{their(875 \div 35)}}$ oe
			or $\frac{35}{their(875 \div 35)}$ or $\frac{their(875 \div 35)}{35}$
(d) (i)	0.661[0]	1	
(ii)	48	3	M2 for $\frac{18.50 - 12.50}{12.50} \times 100$
			or M1 for $\frac{18.50 - 12.50}{12.50}$ or $\frac{18.50}{12.50} \times 100$

10	(a)	A: 14	3n-1 oe	3	B1 for 14 B2 for $3n - 1$ oe or M1 for $3n + k$, for any k oe
		B: -4	26 – 6 <i>n</i> oe	3	B1 for -4 B2 for $26 - 6n$ oe or M1 for $k - 6n$, for any k oe
		C: 25	n^2 oe	2	$\begin{array}{ccc} \mathbf{B1} \text{ for } 25 \\ \mathbf{B1} \text{ for } n^2 & \text{oe} \end{array}$
		D: 20	$n^2 - n$ oe	2	B1 for 20 B1 for $n^2 - n$ oe
	(b) (i)	$\frac{n(3n+1)}{2} =$ $3n^2 + n = 31$	155	M1	$Accept \frac{3n^2 + n}{2} = 155$
		$3n^2 + n = 310$	0		Intermediate step must include elimination of fraction eg $n(3n+1) = 310$
		$3n^2+n-310$	= 0	A1	With no errors or omissions
	(ii)	$10 , -\frac{31}{3}$ oe		3	M2 for $(3n+31)(n-10)$ [= 0] or M1 for $3n(n-10)+31(n-10)$ or n(3n+31)-10(3n+31) or $(3n+a)(n+b)$ where $ab=-310$ or a+3b=1
	(iii)	10		1FT	FT their b(ii) if only one positive integer solution